Personalized Cancer Vaccines

Alex Rubinsteyn Neoantigens & Cancer Immunotherapy

Hammer Lab @ Mount Sinai

- Backgrounds in math, compsci, ML, compbio
- Focus: cancer immunotherapy
 - Cancer genomics
 - Machine learning for immunology
 - Clinical trial analysis
- github.com/hammerlab

PARKER INSTITUTE

Flavors of Cancer Immunotherapy

Checkpoint blockade	Cellular therapies	Vaccines
Disinhibit CD8+ T-cells, antigens responsible for tumor clearance unknown.	Ex-vivo expansion of patient T-cells after receptor engineering and/or selection.	Therapeutic vaccines against tumor antigens. Significant interest in personalized "neo-antigen" vaccines.
Success stories:	Success stories:	Success stories:
 αCTLA-4 (ipi) αPD-1 (pembro, nivo) αPD-L1 (atezo) 	 CD19 CAR T-cells for B-cell malignancies 	• ???

Therapeutic Cancer Vaccines

• Cancer cells differ significantly from their tissue of origin (mutations, expression, dysregulation)

 Can the immune system detect these differences and selectively kill cancers without harming normal tissue?

Many cancer vaccine trials, only 1 FDA approval

Therapeutic cancer vaccines, Melief, et al.

Complementary w/ Checkpoint Blockade?

- Tumor specific T-cells inhibited?
 - Checkpointblockade
- Insufficient tumor specific T-cells?
 - Cancer vaccination

Malignant tumors must have feeble antigenic power as well as sufficient resistance to the normal inhibiting influences to provide continued growth in the animal in which they originate, otherwise reactions sufficient to destroy them would occur more frequently.

Ernest Edward Tyzzer "Tumor Immunity" The Journal of Cancer Research, 1916

T-cell Vaccines & Antigen Processing

10Ahtigens presented by APCs to T-cells

- Innate activation required "danger signal"
- Protein fragments
 presented on Class I MHC to
 cytotoxic (CD8+) T-cells
- Repertoire of CD8+ T-cells undergoes thymic selection to limit self-reactivity

What's In a Cancer Vaccine?

- Antigen
 - Tumor Lysate
 - Peptides
 - o mRNA
 - DNA
 - Viral vector
 - Bacterial vector
- Adjuvant

Shared Tumor Antigens

Shared Tumor Antigens

- Overexpressed and/or tissue-specific
 - Abundant on tumor cells but also present in some normal cells
 - Examples: Her2, Survivin, Telomerase, gp100
- Cancer/Testis Antigens
 - Expressed in testis and placenta
 - Thought to be excluded from tolerance
 - Examples: MAGE-A1, NY-ESO-1

Successful Shared Antigen Vaccine Trial

- Stage III or IV melanoma
- Patients with HLA-A2
- Treated with high dose
 IL-2
- +/- gp100 (209-217)
 peptide
 - Specific to melanocytes
 - Adjuvant: montanide

A Phase III Multi-institutional Randomized Study of. Immunization with gp100:209-217(210M) Peptide.Followed by High Dose IL-2 vs High Dose IL-2 Alone in Patients with Metastic Melanoma (2009)

A Less Successful Trial...

- MAGRIT: Phase III MAGE-A3 vaccine trial
- ~14k lung cancer patients screened
- ~4k had MAGE-A3 positive samples
- 2,272 patients enrolled
- Randomly assigned (2:1) to receive vaccine or placebo for 27 months
- No difference in Progression Free Survival

MAGRIT, a double-blind, randomized, placebo-controlled Phase III study to assess the efficacy of the recMAGE-A3 + AS15

Shared Antigens Mostly Unsuccessful

Cancer type	Vaccine	Total patients	Patients responding
Melanoma	Tyrosinase + GMCSF	16	0
Melanoma	Peptides in IFA or on DC	26	3
Melanoma	MART-1 + IL-12	28	2
Prostate	Peptides	10	0
Melanoma	Peptides on PBMC + IL-12	20	2
Breast and prostate	Telomerase	7	0
Cervix	HPV16 E7	17	0
Colorectal	Peptides in IFA	10	0
Multiple	NY-ESO-1	12	0
Multiple	Ras in DETOX adjuvant	15	0
Multiple	Peptides in IFA	14	0
Prostate	Vaccinia-PSA	33	0
Prostate	Vaccinia-PSA	42	0
Colorectal	Vaccinia-CEA	20	0
Colorectal	Vaccinia-CEA and B7-1	18	0
Multiple	Avipox-CEA(IGMCSF)	60	0
Multiple	Avipox-CEA	15	0
Multiple	Vaccinia + avipox-CEA	18	0

Cancer/Testis Antigens Subject to Negative Selection

- Medullary thymic
 epithelial cells (mTECs)
 express commonly
 studied cancer/testis
 antigens
- Might explain failure of MAGE vaccine trials

Medullary Epithelial Cells of the Human Thymus Express a Highly Diverse Selection of Tissue-specific Genes Colocalized in Chromosomal Clusters

Neoantigens

Tumor Specific Neoantigens

- No overlap with normal
 - mutations
 - abnormal splicing
 - abnormal
 post-translational
 modifications
- Unlikely to be shared between patients
- Requires personalization

Tumor-specific expression of antigen

Detecting Mutations That Change Proteins

- Exome sequencing
 - SNVs
 - Small indels
 - Exonic splice sites
- Genome sequencing
 - Larger indels
 - Gene fusions
 - Intronic splice sites

Mutated neo-antigens as targets for individualized cancer immunotherapy, Mathias Vohrmer

Typical Neoantigen Pipeline

- DNA tumor + normal sequencing
 - Somatic variant calling
- Tumor RNA sequencing
 - Prioritize expressed variants
- Predict mutant proteins
- MHC binding prediction
 - NetMHC / NetMHCpan

Preclinical Evidence

John Castle & Ugur Sahin (2012)

- C57BL/6 mice
- B16.F10 melanoma
- 27mer long peptides
- Poly(I:C) adjuvant
- Single peptide vaccination slows tumor growth

Exploiting the Mutanome for Tumor Vaccination, Castle et al. (2012)

Matt Gubin & Bob Schreiber (2014)

- Taconic 129S6 mice
- MCA-T3 sarcoma cell line
- "mLama4" & "mAlg8" are 8mer neoepitopes
 - Identified with WES + NetMHC
- Long peptide vaccine + Poly(I:C) adjuvant

Mahesh Yadav & Lelia Delamarre (2014)

10

+ anti-CD40 antibody 0

0

Detected by WES + mass spec

Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing, Yadav et al. (2014)

Days post tumour challenge

Mathias Vormehr & Ugur Sahin (2016)

- BALB/c mice
- CT26 colon cell line
- mRNA vaccine
- Two groups of 5 epitopes (#2 works)
- Individual epitopes don't work

Ventral

Dorsal

Ongoing & Upcoming Neoantigen Vaccine Trials

Neon (NEO-PV-01)

- Synthetic long peptides + Poly-ICLC + anti-PD-1 (nivo)
- In-silico epitope prediction
- Read: Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction
- Phase I (NCT02897765) enrolling: 90 patients with {skin, lung, bladder} cancer

Agenus (AutoSynVax) agenus S

- Synthetic long peptides + HSP carrier + QS21 adjuvant
- Why heat shock proteins? APCs pick them up via CD91
- In-silico epitope prediction
- Phase I (NCT02992977) enrolling: 20 patients with

"advanced cancer"

BioNTech (IVAC MUTANOME)

- Ultrasound guided injection of mRNA into lymph nodes
- Phase I (NCT02035956) ongoing: 15 melanoma patients
- Phase I (NCT02316457) enrolling: 30 TNBC patients

Mutanome Engineered RNA Immunotherapy: Towards Patient-Centered Tumor Vaccination

- Launched by Moderna
- mRNA vaccine
- 20 variants
- Status: IND (submitted?)

a moderna venture

Genocea (GEN-009)

- WES to identify candidate neoantigens
- Screens mutant peptides with patient APCs & T-cells
- No MHC binding predictions
- Only pre-existing T-cell responses
- *Status*: IND by end of 2017

Prioritization of Neoantigens without Predictions: Comprehensive T cell Screening using ATLAS

Advaxis (ADXS-Neo)

ADVAXIS IMMUNOTHERAPIES[™]

- Listeria vector
- 20+ neoepitopes per plasmid
- Translated neoepitopes secreted into APC cytoplasm
- Status: IND accepted

Advaxis slides from AACR 2016

The Near Future

- Targeted delivery
 - RNA lipoplex from BioNTech
- Enhanced retention time in lymph node
 - Particle size matters
 - PEGylated peptides
- Adjuvant + antigen nanodiscs
- Post-translational modifications
- Fine-grained immune modulation

Designer vaccine nanodiscs for personalized cancer immunotherapy

