
Alex Rubinsteyn @ Pydata Nyc (November 10Th, 2013)

Python on the GPU
with Parakeet

What’s a GPU?

✤ Originally for drawing pixels on your screen...

✤ Lots of simple processors (“massively parallel”)

✤ Can be dramatically faster than a CPU for numerically
intensive programs (possibly orders of magnitude)

✤ Very annoying to program

✤ warp divergence, occupancy, coalescing, bank conflicts, &c!

CPU vs. GPU highlights

Cost Specs Memory
Bandwidth

Float
Math

Intel Core
i7 3960X $1000

6 cores @
3.3ghz
(8 float
SIMD)

51 GB/s
140

billion
FLOPS

NVIDIA
GTX 780 $700 2880 “cores”

@ 928mhz 336 GB/s 5 trillion
FLOPS

Why is a GPU faster?

✤ CPU spends transistors on cache, memory, branch prediction, &c

✤ GPU is ruthlessly minimalist, mostly math & logic units

Intel Core i7 NVIDIA GTX 780

How do you program a GPU?

✤ Two competing languages: CUDA & OpenCL

✤ Extensions to C/C++

✤ Distinguish boundary between “host” (CPU) code
and sections which run on the graphics card with
attributes like __host__ and __device__.

✤ Program uses special “which thread is this?” variables
to figure out what data elements to read and where to
write results.

Example CUDA Program

Matrix Transpose (Naive Version)

int TILE_DIM = 32;
int BLOCK_ROWS = 8;
int NUM_REPS = 100;

// entry-point to GPU program
__global__
void transposeNaive(float *out, float *in)
{
 // blockIdx and threadIdx are CUDA structs
 int x = blockIdx.x * TILE_DIM + threadIdx.x;
 int y = blockIdx.y * TILE_DIM + threadIdx.y;
 int width = gridDim.x * TILE_DIM;

 for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
 out[x*width + (y+j)] = in[(y+j)*width + x];
}

GPU (“device”) code
void transpose(float* src, float* dst,int nx, int ny)
{
 int n = nx*ny*sizeof(float);
 dim3 dimGrid(nx/TILE_DIM, ny/TILE_DIM, 1);
 dim3 dimBlock(TILE_DIM, BLOCK_ROWS, 1);
 float *d_src, *d_dst;
 checkCuda(cudaMalloc(&d_src, n));
 checkCuda(cudaMalloc(&d_dst, n));
 checkCuda(cudaMemcpy(d_src, src, n,
cudaMemcpyHostToDevice));
 // special CUDA syntax for launching a kernel
 transposeNaive<<<dimGrid, dimBlock>>>(d_dst, d_src);
 checkCuda(cudaMemcpy(src, d_src, n,
cudaMemcpyDeviceToHost));
 checkCuda(cudaFree(d_src));
 checkCuda(cudaFree(d_dst));
}

CPU (“host”) code

Performs actual transpose Moves data to/from GPU,
sets up & launches computation

GPU Programming in Python

✤ PyCUDA / PyOpenCL

✤ Low-level GPU programs as literal strings in Python

✤ Library compiles kernels & moves data

✤ GPUArray container implements small subset of
NumPy’s array interface

✤ scikits.cuda

✤ Wraps precompiled NVIDIA libraries (BLAS, FFT,

Anything higher-level?

✤ Theano

✤ Expression trees compile into GPU kernels (loved by
neural network folks, only supports float32)

✤ Copperhead

✤ Purely functional data parallel DSL in Python

✤ Reinterprets list comprehensions as parallel maps

✤ Compiles to Thrust (C++ CUDA library)

Parakeet

A runtime compiler for numerical Python

@jit
def now_faster(x):
 return np.mean(x < 0)

When you call a @jit wrapped function, Parakeet compiles
it to native code.

Only a numerical/array-oriented subset of Python is
supported.

Array operations run in parallel using OpenMP or CUDA.

What subset of Python works?

✤ Array + Scalar Expressions

✤ Tuples

✤ Data Parallel Operators

✤ (some) NumPy functions

✤ Functions (with keywords)

✤ Loops & Conditionals

a,b,c = (1,2) + (3,)

 def f(pred, y = 1, *zs):
 while pred(y):
 y += sum(zs)
 return y

a * x[2:-3:k] + y[2:, 4:] / b

np.arange(n) + np.linspace(a,b)

parakeet.map(f_three_inputs, x, y, z)
parakeet.reduce(add, x, axis=1)
parakeet.imap(from_index, x.shape)
array([f(xi) for xi in x])

What doesn’t compile? (Most things)

✤ Types other than arrays, slices, scalars: dicts, sets, lists, &c

✤ User-defined objects

✤ Assertions and exceptions

✤ Modifying/mutating anything other than array data

✤ Most library functions

Parakeet doesn’t compete with PyPy, it’s a small DSL

How does Parakeet work?

@jit
def f(x):
 return x + 1

1.
wrap

2.
specialize

f(673.6)

f(np.arange(5))

f(x : float64): return x +float 1.0

f(x : array1<int>): return map(+int, x, 1)

3.
optimize

Compiler magic: Simplify, CSE, DCE,
LICM, Fusion, LowerArrayOperators, Indexify, ...

Decorator parses function source,
translates to untyped IR

4.
codegen

Generate C (sequential), OpenMP (multi-core),
or CUDA (GPU)

Data Parallel Operators

✤ map: Apply a function to the elements of some array(s), or to each
slice along a specified array axis.

✤ reduce: Combine the elements of an array with a binary operator.

✤ scan: Cumulative sums, products, &c

✤ outer_map: Apply function to cartesian product of array elements.

✤ imap: Apply function to indices in cartesian product of ranges.

✤ ireduce: Apply a function to index ranges, collect/reduce results
with a binary operator.

Data Parallelism Without Trying

@jit
def prod(x, axis = None):
 return reduce(prims.multiply, x, init = 1, axis = axis)

NumPy library functions reimplemented w/ data parallelism explicitly

Type Specializer expands array broadcasting into maps
matrix + scalar map(lambda x,y: x + y, matrix, scalar)

You don’t need to always use data parallel operators explicitly.

Comprehensions become maps
[sqrt(xi) for xi in x] map(sqrt,x)

Example: Matrix-Multiply

def matmult(X, Y):
 return array([[dot(row,col) for col in Y.T] for row in X])

Execution Time Compile Time

Parakeet (single core) 14.65s 0.336s
Parakeet (multi-core) 4.08s 0.280s
Parakeet (GPU) 0.11s 2.16s
Numba fails --
Numba w/ explicit loops 14.79s 0.146s
Python + NumPy dot 17.4s --
Python (dot = sum(row*col)) ~12 minutes --
ATLAS (multi-core BLAS) 0.40s --
cuBLAS (GPU) 0.008s --

Timings for 1200x1200 float32 arrays w/ 4-core Xeon 2.67ghz & GTX 780:

Example: Image Convolution

def conv_3x3_trim(image, weights):
 return array([[(image[i-1:i+2, j-1:j+2] * weights).sum()
 for i in xrange(1, image.shape[0]-2]
 for j in xrange(1, image.shape[1]-2])

Execution
Time

Compile Time

Parakeet (single core) 16.8ms 247ms
Parakeet (4 cores) 11.5ms 220ms
Parakeet (GPU) 3ms ~2.5 seconds
Numba w/ loops 17ms 317ms
Python 10,975ms --

Timings for 1200x1200 float64 array:

Example: Simple Regression

def covariance(x,y):
 return ((x-x.mean()) * (y-y.mean())).mean()

@jit
def fit_simple_regression(x,y):
 slope = covariance(x,y) / covariance(x,x)
 offset = y.mean() - slope * x.mean()
 return slope, offset

Execution Time
Parakeet (single core) 202ms
Parakeet (4 cores) 95ms
Parakeet (GPU) (death by memory transfer!) 308ms
Numba 357ms
NumPy 362ms

(timings for x,y = 10 billion doubles)

What’s next?

✤ Fleshing out library functions Tedious, but has to be done.

✤ Improving the GPU backend

✤ Data movement: Currently, every parallel operator copies data to
& from the GPU. Possible to infer when this isn’t necessary.

✤ Data layout: Currently, all new arrays are row-major. Can choose
layouts more intelligently based on access pattern.

✤ Compile Time: NVIDIA’s compiler is slow, should cache compiled
modules from hash of generated source file.

✤ Loop Parallelizer: Simple loops can be turned into parallel

Thanks!

Try out Parakeet: pip install parakeet

Website: www.parakeetpython.com

https://github.com/iskandr/parakeet

Which NumPy functions work?

 Types bool, uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32,
float64

Constructors and Views empty_like, empty, zeros_like, zeros, ones_like, ones, arange, transpose,
ravel, copy

 Array Properties alen, size, rank, dtype

 Reductions min, max, argmin, argmax, all, any, sum, mean

 Scans cumsum, cumprod

 Basic Math & Logic minimum, maximum, abs, add, subtract, multiply, divide, true_divide, mod,
remainder, sign, reciprocal, logical_and, logical_or, logical_not

Comparisons less, less_equal, equal, not_equal, greater, greater_equal

 Logs and Exponents sqrt, square, power, exp, exp2, expm1, log, log10, log2, log1p, logaddexp,
logaddexp2

Rounding trunc, rint, floor, ceil, round

Trig cos, arccos, cosh, arccosh, sin, arcsin, sinh, cosh, tan, arctan, arctan2,
tanh, arctanh

What’s missing from NumPy?

✤ Assertions and exceptions

✤ Complex numbers & structured dtypes

✤ Iterators (flatiter, nditer, ndindex, etc..)

✤ Random numbers (numpy.random)

✤ Linear Algebra (numpy.linalg)

✤ ...and lots more!

Math & Logic ufuncs were the easy part...

