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OpenVax @ Mount Sinai

Focus: personalized cancer vaccines
o Machine learning for immunology
o Cancer genomics

Enthusiastically translational research

Open source software: github.com/openvax

Website: www.openvax.org
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Cancer Immunotherapy




What is cancer?
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Immune system Kkills (most) cancer cells

A. Elimination B. Equilibrium C. Escape

Three E’s of cancer immunity, lan York (2007)




Immune avoidance a hallmark of cancer
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Cancer immunotherapy

e Traditional treatments: focus on killing cancer cells directly
e Immunotherapy: get the immune system to kill the cancer

e Why is cancer spreading despite the immune system?
o Cancer cells inhibiting immune cells
m Block theinhibitory signals!
o Immune cells unable to recognize cancer as non-self
m Teachtheimmune system what to kill



Immunotherapy vs. Chemotherapy
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Therapeutic Cancer Vaccines



Unpacking “therapeutic cancer vaccine”

e Therapeutic

o Treating established disease (not preventative)

e Cancer Vaccine

o Teachthe immune system to kill cancer




What’s in a therapeutic cancer vaccine?

e Tumor antigen
o What should immune system look for?
e Adjuvant
o Something the immune system already responds to as
dangerous

o Examples: double-stranded RNA, mineral oil, dead
bacteria

e Objective: get the immune system to learn that the antigen is
bad and cells which have it should be killed



Personalized therapeutic cancer vaccines

e Personalized

o Made from scratch for each patient

o Requires profiling of patients & their tumors

e Therapeutic

o Treating established disease (not preventative)

e Cancer Vaccine

o Teachthe immune system to kill cancer




Choosing what goes in the vaccine

Sequence patient & tumor DNA
o |dentify tumor mutations
Sequence tumor RNA
o  Which mutations are being
produced into proteins?
Predict which mutations can be
seen by immune system

b
WES, WGS
or RNA-seq
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mutated peptides
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Computational genomics tools for dissecting tumour—-immune cell interactions




Does it work in mice?
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WOr k Mutated neo-antigens as targets for individualized cancer immunotherapy (Figure 3.18), Vormehr (2016)




Clinical trial at Dana Farber

An immunogenic personal neoantigen vaccine for
patients with melanoma

Patrick A. Ott}23* Zhuting Hu'*, Derin B. Keskin!-34, Sachet A. Shukla!, Jing Sun!, David J. Bozym!, Wandi Zhang!,
Adrienne Luoma®, Anita Giobbie- Hurder®, Lauren Peter’#, Christina Chen', Oriol Olive', Todd A. Carter*,

Shugiang Li*, David J. Lieb*, Thomas Eisenhaure*, Evisa Gjini®, Jonathan Stevens'®, William J. Lane'®, Indu Javeri®,
Kaliappanadar Nellaiappan!!, Andres M. Salazar'?, Heather Daley', Michael Seaman’, Elizabeth [. Buchbinder! 2.3,

Charles H. Yoon?, Maegan Harden®, Niall Lennon®, Stacey Gabriel*, Scott J. Rodig”!?, Dan H. Barouch®"®, Jon C. Aster®1?,

Gad Getz»*!4, Kai Wucherpfennig”?, Donna Neuberg®, Jerome Ritz'??, Eric S. Lander”*, Edward F. Fritsch"*t, Nir Hacohen™#13
& Catherine J. Wu!2.3.4

o 6 (stage lll & IV) melanoma patients
o Upto 20 mutations per vaccine

o Adjuvant: Poly-ICLC (synthetic double-stranded RNA)




Dana Farber Trial: Tumor Control
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Of six vaccinated patients, four had no recurrence
at 25 months after vaccination, while two with
recurrent disease were subsequently treated with
anti-PD-1 (anti-programmed cell death-1) therapy
and experienced complete tumour regression, with
expansion of the repertoire of neoantigen-specific T
cells.
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Machine Learning for
Predicting Immune Responses




Where do ML models fit in?

« Vaccines typically target
5-20 mutations
° Depending on the Starting material:

cancer types, we might
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Quick intro to T cells

Proteins cleaved into peptides %g
Some peptides loaded on MHC  protein
Peptide/MHC complexes
presented on cell surface

T cells look at peptide/MHC
complexes

Abnormal displayed peptides
lead to a cytotoxic T cell

response
Yewdell, J.W., Reits, E. & Neefjes, J., 2003. Nature Reviews Immunology 19




MHC Binding Prediction

e Thousands of MHC alleles in
human population

e FEachallele capable of binding a
distinct set of peptides

Peptide

al

a3
e Objective: Predict whether an

MHC allele will bind a given

peptide

Holland, C.J., Cole, D.K. & Godkin, A., 2013. Frontiers in Immunology 20



Immune Epitope Database (IEDB)

o Public dataset of immunology data

Summary Metrics

o Includes >200,000 in vitro binding  eeptiic epitopes
L. . Non-Peptidic Epitopes
affinity measurements of purified  ceiassays
B Cell Assays

MHC/peptides MHC Ligand Assays
. . . Epitope Source Organisms
o Coretraining datafor MHC ligand  resticting mHc aetes
References

prediction tools
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MHC Binding Data

MHC Epitope Assay

Allele Name Description Quantitative measurement
HLA-A*11:01 ADLVGFLLLK 20.300000
HLA-A*03:01 ALAETSYVK 35.500000
HLA-A*11:01 ALAETSYVK 16.400000
HLA-A*02:01 ALAETSYVKV 333.300000
HLA-A*02:01 ALGLVCVQA 333.300000
HLA-A*02:01 ALGLVCVQM 5000.000000
HLA-A*02:01 ALREEEEGV 238.100000
HLA-A*03:01 DLVGFLLLK 2750.000000
HLA-A*03:01 DLVGFLLLKY 1594.200000




T Cell Response Data

antigen assay mhc organism peptide response
, HLA- o .

Assembly protein G7  IFNg release A*B:01 Vaccinia virus ESKAKQLCY Negative
: HLA- e :

Protein A40 IFNg release B*40:01 Vaccinia virus IETPNELSF Negative

Sphrissasen e IFNg release ., HITA' Vaccinia virus VTNLISETLK Negative

precursor A*03:01

CCL4/MIP- HLA- , -

NaN 1b release  A*02:01 Homo sapiens ILAKFLHWL Positive
. HLA- o .

Protein F16  IFNg release A*33:03 Vaccinia virus RFVNKLKMYK  Negative




Linear models perform reasonably well
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o One-hot encoding of amino
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o lgnore dependencies between
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« AUC~=0.85-0.9
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Bjoern Peters




Neural networks do better:
NetMHCpan

e Standard tool to predict peptide/MHC binding affinity
e |nputs: peptide sequence and binding groove residues of MHC

SOFTWARE Open Access

NetMHCpan-3.0; improved prediction of @
binding to MHC class | molecules

integrating information from multiple

receptor and peptide length datasets

Morten Nielsen'?" and Massimo Andreatta’




Deep learning meets immunology

Training
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Python Tools for Immunology ML

e Pandas
o Load and filter messy immunology data

e Seaborn

o Visualization
e Scikit-learn
o Model selection, metrics, shallow (linear & tree) models

e Kerasor PyTorch

o Deep learning/ neural networks




Startup Landscape



Funding for Personalized Cancer Vaccines

moderna:  sizs
Sonr=cq®  s270M
. gritstone  ¢195M

I NEON st

THERAPEUTICS

+ ~20 more companies
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