CudaTree

Training Random Forests on the GPU

Alex Rubinsteyn (NYU, Mount Sinai)
@ GTC on March 25th, 2014

What’s a Random Forest?

A bagged ensemble of randomized decision
trees. Learning by uncorrelated memorization.

trees = []

for 1 in 1 .. T:
Xi, Yi = random sample(X, Y)
t = RandomizedDecisionTree()
t.fit(X1i,Y1)
trees.append(t)

Few free parameters, popular for “data science”

Decision Iree Iraining

Random Forest trees are trained like normal
decision trees (CART), but use random subset
of features at each split.

bestScore = OO, bestThresh = None
for i i1n RandomSubset (nFeatures):
Xi, Yi = sort(X[:, 1], Y)
for nLess, thresh 1n enumerate(Xi):
score = Impurity(nLess, Yi)
1f score < bestScore:
bestScore = score
bestThresh = thresh

Random Forests:
Easy to Parallelize!?

® Each tree gets trained independently!

® Simple parallelization strategy:“each
brocessor trains a tree”

® Works great for multi-core
implementations (wiseRF, scikit-learn, &c)

® Jerrible for GPU

Random Forest GPU
Training Strategies

Tree per Thread: naive/slow

Depth-First: data parallel threshold
selection for one tree node

Breadth-First: learn whole level of a tree
simultaneously (threshold per block)

Hybrid: Use Depth-First training until too
few samples, switch to Breadth-First

Depth-First Training

Thread block = subset of samples

[height > 5' 0"}

Depth-First Training

Thread block = subset of samples

[height > 5'| 0"?}
/

/
.4

[massive beard?j

Depth-First Training

Thread block = subset of samples

[height > 5'| 0"?}
/

/
|4

{massive beard?}
/

/
»

Depth-First Training

Thread block = subset of samples

[height > 5'| 0"?}
/

/
>
{massive beard?}
/ \

/ \
» 4

(VIKING! j [not a viking. J

Depth-First Training

Thread block = subset of samples

[height > 5'|o"z}
/ \

/ \
» 4
(massive beard?} [not a viking. j
/ \
/ \
» 4
(VIKING! j (not a viking. j

Depth-First Training

Thread block = subset of samples

[height > 5'| 0"?}
/ N\

/ \
» 4
{massive beard?} [not a viking. j
/ \
/ \
» 4
(VIKING! j (not a viking. j

Depth-First Training:
Algorithm Sketch

(1) Parallel Prefix Scan: compute label count
histograms

(2) Map: Evaluate impurity score for all feature
thresholds

(3) Reduce: Which feature/threshold pair has the
lowest impurity score!

(4) Map: Marking whether each sample goes left or
right at the split

(5) Shuffle: keep samples/labels on both sides of the
split contiguous.

Breadth-First Training

Thread block = tree node

[height > 5 o"z}

Breadth-First Training

Thread block = tree node

E\eight > 5 o"z}
/ \

/ \
» 4

[massive beard?j [not a viking. j

Breadth-First Training

Thread block = tree node

E\eight > 5 o"z}
/ \

/ \
» 4

[massive beard?j [not a viking. j
/ \

/ \
4 4

(VIKING! } (not a viking. }

Breadth-First Training

Thread block = tree node

E’\eight > 5 o"zj
/ \

/ \
» 4

[massive beard?j [not a viking. j
/ \

/ \
4 4

(VIKING! } (not a viking. }

Breadth-First Training:
Algorithm Sketch

Uses the same sequence of data parallel operations
(Scan label counts, Map impurity evaluation, &c) as
Depth-First training but within each thread block

Fast at the bottom of the tree (lots of small tree
nodes), insufficient parallelism at the top.

Hybrid Training

Add a tree node to the Breadth-First queue
when it contains fewer samples than:

3702 + 1.58¢c + 0.0577n + 21.84f

* € = number of classes
* N = total number of samples

* f = number of features considered at split

(coefficients from machine-specific regression, needs to be generalized)

GPU Algorithms vs.
Number of Features

=
T

—
T

Speedup over scikit-learn

w
T

o
T

o

10

== Depth-First
v Breadth-First

= Hybrid | o

=o= Task Parallel i ¢y

100 1000

Features

® Randomly generated
synthetic data

® Performance relative
to sklearn 0.14

Benchmark Data

Dataset Samples Features Classes
ImageNet | Ok 4k |10
CIFARI00 50k 3k 100
covertype 581k 57 /

poker IM | 10

PAMAP2 2.8/M 52 10

intrustion 5M 41 24

Benchmark Results

: sklearn Cudalree Cudalree
Dataset wiseRF : +
0.15 (Titan) :
wiseRFE
ImageNet 23s 13s 27s 25s
CIFARI100 | 60s | 80s [97s 94s
covertype 107s /3s 67s 52s
poker I'17s 98s 59s 58s
PAMAP2 |,066s 241s 934s 757s
intrustion 667s [,682s | 99s 153s

6- core Xeon E5-2630, 24GB, GTX Titan, n_trees = 100, features_per_split = sqrt(n)

Thanks!

® |nstalling: pip install cudatree

® SOU 'C€ . https://github.com/EFasonLiao/CudaTree

® Credit: Yisheng Liao did most of the

hard work, Russell Power & Jinyang
Li were the sanity check brigade.

https://github.com/EasonLiao/CudaTree
https://github.com/EasonLiao/CudaTree

