Neoantigens beyond SNVs *Embracing the full spectrum of antigenic dark matter in tumors*

Alex Rubinsteyn CIMT May 12th, 2021 DUNC

SCHOOL OF MEDICINE

Neoantigen vaccines: extremely personalized medicine

Neoantigens

- No overlap with normal tissue
 - genomic mutations
 - abnormal splicing
 - abnormal
 post-translational
 modifications
- Unlikely to be shared between patients

Tumor-specific expression of antigen

Getting Personal with Neoantigen-Based Therapeutic Cancer Vaccines

PGV clinical trials at Mount Sinai

Personalized Genomic Vaccine

- **PGV001** (Nina Bhardwaj)
 - Solid cancers + multiple myeloma
 - 13 vaccinated
- **PGV for GBM** (Adilia Hormigo)
 - + TMZ, Tumor Treating Fields
 - 12 vaccinated
- **PGV for Bladder Cancer** (*Matt Galsky*)
 - + Atezolizumab (anti-PD-L1)
 - 10 vaccinated

Shared design:

- Up to 10 peptides
- Peptide length: 25aa
- 10+ injections per trial over 6 months
- Adjuvant: poly-ICLC

• Sequencing

- Tumor/normal WES
- Tumor mRNA-seq
- OpenVax pipeline
 - Identify tumor-specific mutations
 - Predict patient HLA binding of mutant peptides
 - Quantify expression of mutations
 - Rank 25mer vaccine peptides by: MHC affinity * RNA abundance

PGV sequencing &

Neoantigen vaccines: secret sauce?

Secret sauce: vaccine platform

Secret sauce: immuno-informatics

Secret sauce: genomics???

The neoantigen field is addicted to short read exome sequencing

BioNTech (Sahin, ..., Türeci 2017)

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

- Tumor/normal WES
- SNVs only

DFCI (Ott, ..., Wu 2017)

- Tumor/normal WES
- SNVs and small indels
 - Mutect
 - Indelocator
 - Strelka

An immunogenic personal neoantigen vaccine for patients with melanoma

TESLA (Wells, ..., Defranoux 2020)

Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

- Tumor/normal WES
 - Variant calling: SNVs and small indels
- Tumor mRNA-seq
- *Task*: prioritize variants, some T-cell response validation

Neon (Ott, ..., Srinivasan 2020)

- Tumor/normal WES
- Variant calling: SNVs and small indels
 - VarDict
 - Strelka
 - Mutect2
 - VarScan2
 - Atlas Indel2
 - Seurat
 - Platypus

A personal neoantigen vaccine, NEO-PV-01, with anti-PD1 induces broad de novo anti-tumor immunity in patients with metastatic melanoma, NSCLC, and bladder cancer

Cell therapy: NCI's Rosenberg lab

- Preliminary screening of "all" coding mutations using tandem minigenes
 - WES
 - SNVs + small indels
- Identify specific reactive neoantigens using peptides

phasing & some splice variants

WES isn't great even for small mutations

WGS better than WES for exonic indels

- Comparison of 110x WES vs. 30x WGS
- WGS detects more exonic indels
- WES-only indels are likely false positives

Reducing INDEL calling errors in whole genome and exome sequencing data

WGS better than WES for all exonic variants

- Comparison of 73x WES vs. 39x
 WGS
- Higher quality exonic variant calls in WGS data
- ~3% more high quality SNVs in exons from WGS

Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants

Beyond SNVs (and a tiny number of small indels)

What makes a good neoantigen?

- Vaccine peptides containing substitutions derived from SNVs are almost entirely self
- You can (sometimes) get vaccine induced recognition of a single mutant amino acid, but why make things hard?

Likelihood of loss

Neoantigen cell-viability gene

Binding to multiple HLAs

Neoantigen clonal fraction

Neoantigen expression

Neoantigen quality, not quantity

Neoantigens from "large" mutations

- Indels
 - Of all sizes!
- Structural variants
 - Fusions
 - Duplications
 - Inversions
- Splicing
 - Exon skipping
 - Intron retention
- Viral integration

Diverse Neoantigens and the Development of Cancer Therapies

Quality of mutations: major blind spot

- Evaluated many different neoantigen predictive factors
- Starting set of mutations is impoverished due to short read WES!

Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

Fusion neoantigens from RNA-seq

Immunogenic neoantigens derived from gene fusions stimulate T cell responses

Identifying MSI frameshifts from short read sequencing

- Deconvolution of coding microsatellite frameshifts
- "(NGS) approaches have a limited sensitivity for the detection of indel mutations at homopolymer sequences such as neoantigen-related cMS"

The shared neoantigen landscape of MSI cancers reflects immunoediting during tumor evolution

mutation quantification via ReFrame

PGV: splice-site variant example

- Example in TP53 from PGV001 patient
- C>A genomic variant at last base of exon (G>U mRNA change)
- Consensus 5' splice signal is GG|GU
- With mutation, this exon of TP53 ends with "AU" instead of "GG"
- All RNA reads with mutation retain intronic sequence!

PGV: phasing + splice site variants

- Mount Sinai PGV
 patient mutations,
 DNA-only annotation
 is correct sequence
 for ~91.5% of
 variants
- Co-occurrence with germline and other somatic variants

Matches DNA annotation (91.5%)
 Intron retention (0.7%)
 Phased with another somatic variant (3.6%)
 Phased with germline variant (4.1%)

Short read sequencing misses most cancer mutations

Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing

Long read somatic variant calling with personalized genome assembly

 "we identified 3,498 large deletions, 2,239 large insertions and 101 Duplications (DUP) as somatic SVs"

Personalized genome assembly for accurate cancer somatic mutation discovery using cancer-normal paired reference samples

SNV and Indel calling

Pilot study

Sequencing technology bake-off

- Tumor/Normal DNA
 - Illumina WES
 - 150bp, variable coverage, Q30+
 - Illumina WGS
 - 150bp, even coverage, Q30+
 - Oxford Nanopore WGS
 - 10kb to 1Mb reads, <Q20
 - PacBio HiFi WGS
 - ~30kb reads, >Q40
- Tumor mRNA
 - Illumina vs. Oxford Nanopore vs. PacBio IsoSeq

Sample Types

• Cell lines

- **U87**
- **U937**
- Clinical samples 1000
 - AML
 - GBM
 - TNBC
 - LUAD

HPV+
 HNSCC

Mutation-Derived Neoantigens for Cancer Immunotherapy

Analysis

• Basic principles

- discovery in DNA
- validation and quantification in RNA
- SNV-free zone (look for everything else)
- Algorithmic Approaches
 - Reference-guided
 - Difference of high sensitivity normal, high specificity tumor
 - Personalized genome assembly
 - Graph genome
- Evaluation
 - Validation in RNA (only care about expressed variants)

Big picture: better neoantigen vaccine

PANDA-VAC trial(s) with Ben Vincent and Jared Weiss @ UNC

Big picture: better neoantigen vaccine

PANDA-VAC trial(s) with Ben Vincent and Jared Weiss @ UNC

Big picture: better neoantigen vaccine

PANDA-VAC trial(s) with Ben Vincent and Jared Weiss @ UNC

Big picture: better neoantigen vaccine

- PANDA-VAC trial with Ben Vincent and Jared Weiss
- Rich initial set of "large" mutations
 - High accuracy long read sequencing of tumors
 - Ignore SNVs, only target fusions, indels, and other "large" mutations such as viral integration sites, repeat expansions, &c
- Immunogenic vaccine formulation
 - Antigen and adjuvant based on SARS-CoV-2 experiments
- Improved T-cell epitope prediction
 - Multi-output Transformer model which predicts T-cell response assays as well as peptide-MHC affinity, antigen processing &c

Intron retention in cancer

Smart, ..., Van Allen 2018

- Widespread intron retention in clinical and cell line samples
- Generates much larger "novel" protein sequence than small variants

Intron retention is a source of neoepitopes in cancer

• Sequencing

- 2x125bp on HiSeq 2500
- Tumor/normal WES
- Tumor mRNA-seq
- OpenVax pipeline
 - Identify tumor-specific mutations
 - Predict patient HLA binding of mutant peptides
 - Quantify expression of mutations
 - Rank 25mer vaccine peptides by: MHC affinity * RNA abundance

Shared antigen vaccines

Cancer type	Vaccine	Total patients	Patients responding
Melanoma	Tyrosinase + GMCSF	16	0
Melanoma	Peptides in IFA or on DC	26	3
Melanoma	MART-1 + IL-12	28	2
Prostate	Peptides	10	0
Melanoma	Peptides on PBMC + IL-12	20	2
Breast and prostate	Telomerase	7	0
Cervix	HPV16 E7	17	0
Colorectal	Peptides in IFA	10	0
Multiple	NY-ESO-1	12	0
Multiple	Ras in DETOX adjuvant	15	0
Multiple	Peptides in IFA	14	0
Prostate	Vaccinia-PSA	33	0
Prostate	Vaccinia-PSA	42	0
Colorectal	Vaccinia-CEA	20	0
Colorectal	Vaccinia-CEA and B7-1	18	0
Multiple	Avipox-CEA(IGMCSF)	60	0
Multiple	Avipox-CEA	15	0
Multiple	Vaccinia + avipox-CEA	18	0

Cancer immunotherapy: moving beyond current vaccines

Not just vaccines: cellular therapy

Not just vaccines: TCR therapy

Long read somatic variant calling with personalized genome assembly

Personalized genome assembly for accurate cancer somatic mutation discovery using cancer-normal paired reference samples

- Cell line DNA+RNA submitted for Illumina + ONT sequencing
- Sending cell line DNA+RNA to DHMRI (Kannapolis)
- AML sample going to be sorted into tumor+normal soon
- Ongoing optimization of HMW DNA extraction kits for low input volume surgical samples
- Working with Variant Graph (vg) team on graph based long+short read somatic variant calling

Karasaki, ..., Nakajima 2016

Identification of Individual Cancer-Specific Somatic Mutations for Neoantigen-Based Immunotherapy of Lung Cancer

Xu, ..., Fan 2020

Target prioritization Mutation identification Template DNA design T/N exome/RNA Seq Personal vaccine manufacture Prime Boost Sample aquisition Vaccine administration

Towards customized cancer vaccines: a promising field in personalized cancer medicine

Neoantigen history

The first neoantigen paper (Monarch, ..., Schreiber 1995)

A Unique Tumor Antigen Produced by a Single Amino Acid Substitution

Rat HLF FRO	AT	GAA	GAC	CAT	TCI	CA	GCAA	TCA	GAG	TGT	CGA	CAT	TCC	AGA		TGT	CGA	A	CAC	TCT
mL.9													P	E	N	۷	E	I	T	L 20
Rat	**	GGG	GCG	CAC	AGT	CA	80 TTGT	GAA	GGG	ccc	CAG	AGG	AAC	00	GAG	GAG	GGA	CTT	CAN	12
PRO mL9	ĸ	G	R	T	v	I	v	ĸ	G	P 30	R	G	G T	L	-C- R	R	D	F	N	H 40
Rat	AT	CAJ	TGT	AGJ	GCI	GAG	140 GTCT	TCI	TGO		GAA	AAA G	GAN	60 AAG	GCT	ccc	TGI	TG	CN	18
PRO mL9	ī	N	Č	Ğ	L	s	L/H	L	G	GK 50	ĸ	Ğ	ĸ	R	L	R	G	D	ĸ	A
Rat	TG	GGG	TAA	CAC	GAA	GG	200	GGG	CAC	TGT	CAG	AAC	CAT	20 CTG	CAC	TCA	TGT	тся	GAJ	24
PRO mL9	w	G	N	R	×	E	L	A	T	V 70	R	G	I	c	s	H	v	Q	N	M 80
Rat	AT	CAA	GGG	TGT	GAC	ACT	260 rGGG	CTT	ccc	TTA	CAA	GAT	GAG	80 GTC	TGT	GTA	TGC	TCA	CTI	30
PRO mL9	ī	ĸ	G	v	Ť	G	G	F	R	¥ 90	ĸ	×	-C- R	s	v	Y	×	н	P	P. 10
Rat	AT	CAA	CGT	CGT	TAT	TC.	320 AGGA	GAA	TGG	GTC	TTT	GGT	TGA	40 AAT	000		TTT	CTI	GGG	36 TGA
PRO mL9	ī	N	v	v	°	C-	E	N	G	S 110	T-L-	v	E	I	R	N	F	L	G	E 12
Rat	AA	ATA	CAT	ccc	GAG	GG	380 TTCG	GAT	GAG	GAC	AGG	TGT	TGC	00	TTO	TGT	CTC	TCA	AGO	42
PRO mL9	ĸ	Ŷ	I	R	Č R	v	R	M	R	T. 130	G	v	G	c	s	v	s	Q	Å	9
Rat	AA	GGJ	TGA	GTT	****	rcc	440 TTGA	AGO		TGA	TAT	TGA	ACT	60 TCT	TTO		TTO	AGO	GGG	48
PRO mL9	ĸ	D	E	L	I	L	E	G	N	D 15	Ĩ	E	L	v	s	N	s	A	Ť	Č
Rat	AT	TCA	GCA	AGO	CAC	AA	500 CAGT	TAA		CAN	GA	TAT	CAG	20 GAA	GTT	111	GGA	TGG	CAT	54 CTA
PRO mL9	ī	Q	Q		T	T	v	ĸ	N	K 170	D	ī	R	ĸ	F	L	D	Ċ G	I	¥ 18
							560													

Tumor

 $\wedge \Delta$

1591

PRO4L

No clones

anti-6132A

anti-1591

The other original neoantigen pipeline (Matsushita, ..., Schreiber 2012)

Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting

- Looking for evidence of immunoediting
 - Schreiber Lab later applied same pipeline to vaccination
- Tumor/normal WES
- Tumor mRNA-seq
- Variant calling: SNVs only
- Immune prediction: MHC binding

H-2D ^b :			
	Peptides		IC ₅₀ (nM)
Olfr195 (L14M)	YSVTNEFIL	(wild-type)	5
5	YSVTNEFI <u>M</u>	(mutant)	5
Spnb2 (R913L)	VAVVNQIAR	(wild-type)	5305
	VAVVNQIA <u>L</u>	(mutant)	7
Tbk1 (G722S)	GGLRNVDCL	(wild-type)	36
	G <u>S</u> LRNVDCL	(mutant)	8
Fam38a (M134I)	MAGINTDHL	(wild-type)	23
	<u>I</u> AGINTDHL	(mutant)	14
Cxx1b (D54N)	YMLVDDRTF	(wild-type)	4303
	YMLV <u>N</u> DRTF	(mutant)	14
H2-Q6 (R142L)	FAYEGRDYI	(wild-type)	27
	FAYEG <u>L</u> DYI	(mutant)	14
A2m (G777V)	FCLSNDTGL	(wild-type)	502
	FCLSNDT <u>V</u> L	(mutant)	15
Ubqln4 (R262L)	RALSNLESV	(wild-type)	10
	LALSNLESV	(mutant)	24

Moving a little beyond SNVs (Rajasagi, ..., Wu 2014)

- Mostly WES (some WGS)
- Variant calling with Mutect
- SNVs > indels > splice site variants

Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia

How do cytotoxic T-cells recognize neoantigens?

- Cells present peptide fragments of their protein contents bound to MHC-I
- CD8+ T-cells selected recognize non-self, then "licensed" to kill by APCs
- TCR recognition of peptide-MHC: kill!

Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy

Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands

MHC binding prediction

Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy

Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands

NetMHCpan 4.0

Trial logistics

- 1-2 weeks from surgery to sequencing data
- 1 week to run computational pipeline and manually review results
- 6-8 weeks peptide synthesis
- 10 immunizations over 6 months

Neoantigens driving cancer vaccine resurgence

- >\$1B investments in startups
 - **BioNTech** (bought Neon)
 - Moderna (reabsorbed Caperna)
 - Gritstone, Genocea, EpiVax Oncology, &c

Immuno-oncology drug development goes global

Immunotherapy vs. chemotherapy

Overall Survival

What is a T-cell?

- Patrols the body, looks for cells making "unexpected" proteins
 - Viruses and cancer
- T-cells have very diverse receptors to recognize different patterns
- When a (cytotoxic) T-cell finds its target: kill! kill!

Juan Gartner / Getty Images

Neoantigens to the rescue

- No overlap with normal cells
 - \circ genomic mutations
 - abnormal splicing
 - \circ abnormal

post-translational modifications

• Tumor specific + no immune tolerance

OpenVax Pipeline overview

- Tumor + normal DNA
 - Somatic variant calling
- Tumor RNA
 - Phase co-expressed variants
 - Mutant protein sequence
 - Quantify mut. allele expression
- Rank by expression and MHC-I affinity
- Select manufacturable peptides
- <u>www.github.com/openvax/</u>

Flavors of cancer immunotherapy

Checkpoint blockade	Cellular therapies	Vaccines
Disinhibit T-cells. Antigens responsible for tumor clearance typically unknown.	Expand patient T-cells after receptor engineering and/or selection.	Therapeutic vaccines against specific tumor antigens, including patient-specific mutated tumor antigens.
Success stories:	Success stories:	Success stories:
 αCTLA-4 (ipi) αPD-1 (pembro, nivo, cemi) αPD-L1 (atezo, ave, durva) 	• CAR T-cells for B-cell malignancies (CD19, CD20, CD22, BCMA)	• ???

"Traditional" personalized medicine

https://en.wikipedia.org/wiki/Personalized_medicine

Neoantigen vaccines: extremely personalized medicine

Personalized cellular therapies

Figure adapted from Tim O'Donnell's PhD defense

What makes a good neoantigen?

- Dissimilarity from self
 neoOREs >>> SNVs
- Abundance
- Clonality
- Mutant peptide binds patient MHC
 - Antigen processing
 - HLA allele loss
- Prefer driver and homozygous mutations

Likelihood of loss

Neoantigen cell-viability gene

Binding to multiple HLAs

Neoantigen expression

Neoantigen quality, not quantity

Clinical trials at Mount Sinai

- **PGV001** (Nina Bhardwaj)
 - Solid cancers, multiple myeloma
 - Long peptides + poly-ICLC
 - 13 vaccinated
- **PGV for GBM** (Adilia Hormigo)
 - + TMZ, Tumor Treating Fields
 - 8 vaccinated
- **PGV for Bladder Cancer** (*Matt Galsky*)
 - + Atezolizumab (anti-PD-L1)
 - 3 vaccinated

Shared design:

- Up to 10 peptides
- Each peptide has up to 25 amino acids
- 10+ injections per trial over 6 months
- Adjuvant: poly-ICLC

Mount Sinai PGV pipeline

• Inputs

- Tumor + Normal DNA
- Tumor RNA
- Selection
 - Identify coding mutations
 - Quantify expression
 - Predict MHC binding of mutant peptides
 - Rank by MHC affinity * RNA abundance
- Vaccine
 - Peptides + adjuvant (poly-ICLC)
 - Alternatives: mRNA, DNA, viral vector, &c

Vaccine peptide ranking

 Multiplicative ranking inspired by T cell epitopes which have low MHC affinity but high abundance

 $\begin{aligned} \text{TotalScore} &= \text{ExpressionScore} \cdot \text{BindingScore} \\ \text{ExpressionScore} &= \sqrt{\# \text{ supporting reads}} \\ \text{BindingScore} &= \sum_{p}^{\text{mutant peptides alleles}} \sum_{mhc} \sigma(\text{IC50}(p, mhc)) \\ \sigma(x) &= \exp(-\frac{x-150}{350}) \end{aligned}$

The MHC class I peptide repertoire is molded by the transcriptome (2008)

Concordance of neoantigen pipelines

How many of the PGV001 trial vaccine variants (n=136) are predicted by different neoantigen prediction tools?

Peptides + poly-ICLC @ DFCI (2017)

An immunogenic personal neoantigen vaccine for patients with melanoma

Patrick A. Ott^{1,2,3*}, Zhuting Hu^{1*}, Derin B. Keskin^{1,3,4}, Sachet A. Shukla^{1,4}, Jing Sun¹, David J. Bozym¹, Wandi Zhang¹, Adrienne Luoma⁵, Anita Giobbie–Hurder⁶, Lauren Peter^{7,8}, Christina Chen¹, Oriol Olive¹, Todd A. Carter⁴, Shuqiang Li⁴, David J. Lieb⁴, Thomas Eisenhaure⁴, Evisa Gjini⁹, Jonathan Stevens¹⁰, William J. Lane¹⁰, Indu Javeri¹¹, Kaliappanadar Nellaiappan¹¹, Andres M. Salazar¹², Heather Daley¹, Michael Seaman⁷, Elizabeth I. Buchbinder^{1,2,3}, Charles H. Yoon^{3,13}, Maegan Harden⁴, Niall Lennon⁴, Stacey Gabriel⁴, Scott J. Rodig^{9,10}, Dan H. Barouch^{3,7,8}, Jon C. Aster^{3,10}, Gad Getz^{3,4,14}, Kai Wucherpfennig^{3,5}, Donna Neuberg⁶, Jerome Ritz^{1,2,3}, Eric S. Lander^{3,4}, Edward F. Fritsch^{1,4}†, Nir Hacohen^{3,4,15} & Catherine J. Wu^{1,2,3,4}

- 6 (stage III & IV) melanoma patients
- Up to 20 mutated peptides per vaccine
- Adjuvant: Poly-ICLC

Peptides + poly-ICLC: Tumor control?

Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells.

GBM 2018: steroids during priming = bad

mRNA vaccine: Tumor control

- 8/13 patients had no measurable lesions before vaccination
 - Remained disease free throughout monitoring period
- 5 patients had growing lesions before vaccination
 - 1 patient: complete response
 - 1 patient: stable disease
 - 1 patient: complete response after treatment with anti-PD1
 - 1 patient had partial response until tumor cells lost B2M
- ~20% mutations had ex vivo CD4+ responses
- ~50% mutations had CD4+ responses after in vitro stim
- ~25% mutations had CD8+ responses after in vitro stim

Antigen Processing

Components which influence which peptides seen by T-cells:

proteasome, cytosolic peptidases, TAP, ERAP, tapasin, MHC

Antigen processing and presentation: TAPping into ABC transporters

Does antigen processing matter?

MHCflurry 2.0: Binding + Processing

Adapted from Tim O'Donnell's PhD defense

MHCflurry 2.0: Data Sources

MHCflurry 2.0: Architecture

NEURAL NETWORK ENSEMBLE

DATA + RANDOM NEGATIVE PEPTIDES

Affinities	Mass spec	Random
$K_d = x nM$	K _d < 100 nM	K _d > 30 μM

INPUT REPRESENTATION

MHC I allele: selected positions

...HVDTLYGVRYDHYYTWAVL...

Peptide: left, centered, right **PEPTIDE** XXX**PEPTIDE** XXX**PEPTIDE**

Adapted from Tim O'Donnell's PhD defense

Adapted from Tim O'Donnell's PhD defense

MHCflurry 2.0: Performance

Next ML Frontier: T-cell Epitope Prediction

- Given:
 - Peptide sequence
 - Surrounding source protein sequence
 - Abundance of source protein
 - MHC alleles
- Predict:
 - What's the probability of a T-cell response?
 - All upstream steps (antigen processing, MHC binding) necessary but not sufficient

Big picture: better neoantigen vaccine

- PANDA-VAC trial with Ben Vincent and Jared Weiss
- Rich initial set of "large" mutations
 - High accuracy long read sequencing of tumors
 - PacBio HiFi reads or polished Oxford Nanopore
 - Ignore SNVs, only target fusions, indels, and other "large" mutations such as ERV integration sites, repeat expansions, &c
- Immunogenic vaccine formulation
 - Antigen and adjuvant based on SARS-CoV-2 experiments
- Improved T-cell epitope prediction
 - Multi-output Transformer model which predicts T-cell response assays as well as peptide-MHC affinity, antigen processing &c

Antigen Processing Example: Source Protein

- Example protein: SARS-CoV-2 ORF8
- Right: structure
- Below: sequence

Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis Mechanisms of SARS-Related Coronaviruses

MKFLVFLGIITTVAAFHQECSLQSCTQHQPYVVDDPCPIHFYSKWYIRVGARKSAPLIELCVDEA GSKSPIQYIDIGNYTVSCLPFTINCQEPKLGSLVVRCSFYEDFLEYHDVRVVLDFI

Antigen Processing Example: Initially Cutting By Proteasome

Antigen Processing Example: Transport by TAP

Antigen Processing Example: Trimming by ERAP

Antigen Processing Example: Binding to MHC

ML experiment: Transformers!

- Pretrained "Evolutionary Scale Modeling" Transformer (Facebook)
- Single sequence input: "peptide#MHCsequence"
- Fine tuning: Predict single scalar, peptide-MHC affinity

Which mutations?

Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing

Beyond Mutations: Splicing (and PTMs)

Diverse Neoantigens and the Development of Cancer Therapies

Preliminary ELISpot results

- Highlighted strongest responses in n=5 peptide groups
 - A3: N310-336
 - B1: M95-121
- Still highest when combined w/ other peptides
 - ~3x-4x reduction in mean well intensity

Ongoing & planned experiments

- Find best adjuvant for each antigen
 - small # of mice
- Compare antigens to each other + recombinant spike
- Circular peptides:
 - Hard to manufacture!
 - 9/16 successfully synthesized
- Branched peptides (MAPs):
 - Slow to manufacture!

Antigen

Adjuvant

Validation in Multiple SARS-CoV-2 T-cell Studies

	Sequence	Protein	Start	End	B-cell Epitope Region	HLA-I Coverage	HLA-II Coverage	$\mathrm{H2}^{b}$ I	$\mathrm{H2}^{b}$ II	$\mathrm{H2}^d$ I	$\mathrm{H2}^{d}$ II	Selection Sets
						00.007	00.007					* * ^b * ^d * ^{bd}
1	LLQFAYANRNRFLYIIKLIFLWLLWPV	м	34	60		89.0%	36.0%	+	+	+	+	@d @b @bd
2	PVTLACFVLAAVYRINWITGGIAIAMA	M	59	85		42.0%	76.0%	+	+	121	+	06
3	YFIASFRLFARTRSMWSFNPETNILLN	M	95	121		78.0%	53.0%	+	+	+	+	(1) bd
4	KDLSPRWYFYYLGTGPEAGLPYGANKD	N	102	128		49.0%	39.0%	+	+	+		* * ^b * ^d
5	WPQIAQFAPSASAFFGMSRIGMEVTPS	N	301	327		63.0%	61.0%	+	+	+	+	obd &d &bd
6	AQFAPSASAFFGMSRIGMEVTPSGTWL	N	305	331		71.0%	57.0%	+	+	+	-	۲. ۲. ا
7	SASAFFGMSRIGMEVTPSGTWLTYTGA	N	310	336		76.0%	45.0%	+		+	-	* ^{bd}
8	VTPSGTWLTYTGAIKLDDKDPNFKDQV	N	324	350		50.0%	62.0%	+	+	-	-	06
9	PQRQKKQQTVTLLPAADLDDFSKQLQQ	N	383	409		11.0%	52.0%	-	9		+	o o ^d ®
10	YPDKVFRSSVLHSTODLFLPFFSNVTW	S	38	64		44.0%	52.0%	2	+	+	+	$^{\otimes d}$
11	GAAAYYVGYLQPRTFLLKYNENGTITD	S	261	287		88.0%	38.0%	+	+	+	-	* ^{bd}
12	SETKCTLKSFTVEKGIYOTSNFRVOPT	S	297	323		54.0%	52.0%			+		$*^d$
13	GLTVLPPLLTDEMIAQYTSALLAGTIT	S	857	883		66.0%	73.0%	+	+	+	+	
14	SVLNDILSRLDKVEAEVQIDRLITGRL	S	975	1001		72.0%	28.0%	+		-	-	** ^b
15	RLQSLQTYVTQQLIRAAEIRASANLAA	S	1000	1026		54.0%	81.0%	27	+	+	+	o od ob obd
16	GNYNYLYRLFRKSNLKPFERDISTEIY	S	447	473	456-FRKSNLKPFERDISTEIY-473	82.0%	38.0%	+	-	+	-	∎ ∰ ^d ∎ ^b ∎ ^{bd}
17	YLYRLFRKSNLKPFERDISTEIYQAGS	S	451	477	456-FRKSNLKPFERDISTEIY-473	78.0%	46.0%	+	1.0	-		- 0
18	FRKSNLKPFERDISTEIYQAGSTPCNG	S	456	482	456-FRKSNLKPFERDISTEIY-473	46.0%	30.0%	-	+	-		06
19	KFLPFQQFGRDIADTTDAVRDPQTLEI	S	558	584	580-QTLE-583	0.0%	0.0%	-	-	-	-	
20	PQTLEILDITPCSFGGVSVITPGTNTS	S	579	605	580-QTLE-583	13.0%	21.0%		100			• •
21	IYKTPPIKDFGGFNFSQILPDPSKPSK	S	788	814	809-PSKP-812	35.0%	23.0%		+			
22	PSKPSKRSFIEDLLFNKVTLADAGFIK	s	809	835	809-PSKP-812	66.0%	40.0%	+			+	te te cod T

How do T-cells recognize tumor as "non-self"?

Intracellular

- Generate "non-self"
 - Abnormal expression
 - Mutant coding DNA
 - Abnormal splicing
 - Abnormal translation
 - PTMs
- Antigen Processing
 - Only a few peptides per protein make it to MHC
- MHC Binding / Stability

Immune

- Germline bias of TCRs
 - Some TCRs have limited junctional diversity, germline gene segments.

• Thymic Selection

 "Self" ~= what peptides are presented to T-cells in the thymus

• Pathogen exposure

Cross-reactivity rare but expanded
 T-cell clones more likely to
 encounter tumor

Do we get enough mutations?

Source: Julia Kodysh

What is a T-cell?

- Patrols the body, looks for cells making "unexpected" proteins
 - Viruses and cancer
- Each T-cell has a randomly generated receptor
- When a (cytotoxic) T-cell finds its target: kill! kill!

Trial logistics

- 1-2 weeks from surgery to sequencing data
- 1 week to run computational pipeline and manually review results
- 6-8 weeks peptide synthesis
- 10 immunizations over 6 months

MHC: Most Diverse Gene in the Human Genome

- 3 genes (HLA-A/B/C)
- Everyone has two copies of each gene
- Thousands of distinct versions ("alleles")
- Each allele has a distinct pattern recognition specificity

MHC binding prediction

A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction

Neoantigen vaccination: simple!

• Inputs

- Tumor + Normal DNA
- Tumor RNA
- Selection
 - Predict which mutant
 peptides bind patient MHC
- Vaccine
 - Peptides + adjuvant, mRNA,
 DNA, viral vector, bacterial
 vector, &c

Quick Intro to the Immune System

- Innate Immune System
 - Recognize pathogens through evolved pattern recognition receptors
- Adaptive Immune System
 - Learn outlier self vs.
 non-self detection
 - Kill non-self when it's causing damage

Peptides + poly-ICLC: T Cell responses

Peptides + poly-ICLC for GBM @ DFCI (2018)

Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial

Derin B. Keskin^{1,2,3,4,5,19}, Annabelle J. Anandappa^{1,4,19}, Jing Sun^{1,19}, Itay Tirosh^{3,6,19}, Nathan D. Mathewson^{4,7,19}, Shuqiang Li^{3,5}, Giacomo Oliveira¹, Anita Giobbie–Hurder⁸, Kristen Felt⁹, Evisa Gjini⁹, Sachet A. Shukla^{1,5}, Zhuting Hu¹, Letitia Li¹, Phuong M. Le¹, Rosa L. Allesøe^{1,10}, Alyssa R. Richman^{3,4,11,12}, Monika S. Kowalczyk³, Sara Abdelrahman⁹, Jack E. Geduldig¹³, Sarah Charbonneau¹³, Kristine Pelton¹³, J. Bryan Iorgulescu^{1,4,14}, Liudmila Elagina³, Wandi Zhang¹, Oriol Olive¹, Christine McCluskey¹, Lars R. Olsen¹⁰, Jonathan Stevens¹⁴, William J. Lane^{4,14}, Andres M. Salazar¹⁵, Heather Daley¹, Patrick Y. Wen^{1,4,16}, E. Antonio Chiocca^{4,17}, Maegan Harden³, Niall J. Lennon³, Stacey Gabriel³, Gad Getz^{3,4,12}, Eric S. Lander³, Aviv Regev³, Jerome Ritz^{1,2,4}, Donna Neuberg⁸, Scott J. Rodig^{4,9,14}, Keith L. Ligon^{3,4,13,14}, Mario L. Suvà^{3,4,11,12}, Kai W. Wucherpfennig^{4,7}, Nir Hacohen^{3,4,12}, Edward F. Fritsch^{1,3,18}, Kenneth J. Livak^{1,5}, Patrick A. Ott^{1,2,4}, Catherine J. Wu^{1,2,3,4} & David A. Reardon^{1,2,4}*

- 10 enrolled glioblastoma patients, 8 w/ enough mutations
- All eight vaccinated patients eventually died
- 6/8 were given steroids during priming: no T-cell responses!
Peptide vaccines for pathogens

- Potential problems with whole virus or whole protein vaccination:
 - Diffuse T-cell responses; will immunodominant epitopes match presented epitopes of infected cells?
 - Responses to polymorphic regions of virus
 - Unlikely (but worrying) possibility of antibody dependent enhancement (ADE), mediated by non-neutralizing antibodies
- Potential benefits of peptide vaccines:
 - Fine-grained selection of antigenic content
- Limits:
 - Can't target conformational B-cell epitopes! (only linear)
 - Only a few effective prophylactic peptide vaccines (e.g. FMDV)

Integrating Predicted T-Cell Epitopes With Measured Linear B-cell Epitopes

- Predict SARS-CoV-2 MHC binding for Class I & II alleles covering US population
 - Filter by predicted T-cell immunogenicity, protein abundance, polymorphic sites
- Combine w/ measured B-cell epitopes from convalescent patient plasma
 - Filter by accessibility, non-glycosylation, annotated functional regions on spike protein

Curated Linear B-cell Epitope Data Sources

Source for Glycosites (Watanabe et al.)

Site-specific analysis of the SARS-CoV-2 glycan shield

Yasunori Watanabe^{1,2,3#}, Joel D. Allen^{1#}, Daniel Wrapp⁴, Jason S. McLellan⁴, Max Crispin^{1*}

Polymorphic Sites

- Collected all SARS-CoV-2 sequences in Nextstrain
- >0.1% frequency
- 28 sites
- Most common: D614G (~50%)

Personalized cancer vaccines

Figure adapted from Tim O'Donnell's PhD defense

Source for Accessibility (Grant et al.)

3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development

Oliver C. Grant, David Montgomery, Keigo Ito, Robert J. Woods*

Table 1. SARS-CoV-2 S glycoprotein antigenic surface areas (Å²) as a function of

Glycoform	Average antibody accessible surface area (AbASA) ^a	Exposed fraction of AbASA
M3	58,579 ± 2.8%	0.71
	44,184 ± 1.1%	0.53
	45,571 ± 1.6%	0.55
Complex Core F	43,943 ± 2.0%	0.53
HEK293 site-specific glycosylation	48,322 ± 0.7%	0.58
Non-glycosylated	83,041 ± 2.8%	1.00

^aSurface areas were computed with the Naccess software ⁶⁸, version 2.1.1.

Accessible residues near functional features

Only 3 B-cell linear epitopes regions

Filters:

- >=4mer region
- Accessibility > 25%
- Does not contain glycosites
- Does not contain polymorphic sites
- Within 50aa of RBD or 15aa of fusion peptide (FP) or HR1/HR2 regions

Number of data sources supporting each residue as antibody epitope

Location of predicted linear B-cell epitopes

- **\$580-583**: downstead of RBD, target of known neutralizing antibody
- **S809-812**: adjacent to fusion peptide, occurs in a 5 B-cell epitope datasets
- **S456-473**: RBM loop which contacts ACE2, only accessible when RBD in open conformation

T-Cell Immunogenicity Prediction

- Constructed CD4+ & CD8+ immunogenicity models from IEDB tetramer data
 - Model = logistic regression
- Features
 - % amino acids {aromatic, acidic, basic, cyclic, thiols}
 - MHC binding & presentation
 - CD8+: NetMHCpan & MHCflurry
 - CD4 +: NetMHCIIpan
 - CD8+: MHCflurry processing score

Compact peptide sets for different selection criteria

Symbol	Set	# Peptides	HLA-I Coverage	HLA-II Coverage	Total Coverage	# B-cell Epitope Regions
۲	CD4+/CD8+	4	92.2%	88.5%	81.6%	0
$^{\circledast^d}$	CD4+/CD8+ (H2 ^d ligands)	4	93.8%	84.7%	79.5%	0
$^{\circledast^b}$	CD4+/CD8+ (H2 ^b ligands)	3	92.2%	84.7%	78.1%	0
$^{(*)}$	CD4+/CD8+ (H2 ^b and H2 ^d ligands)	4	92.1%	84.7%	78.0%	0
0	CD4+	3	91.3%	88.5%	80.8%	0
od	CD4+ (H2 ^d ligands)	3	91.3%	88.5%	80.8%	0
00	CD4+ (H2 ^b ligands)	3	76.8%	84.7%	65.0%	0
obd	CD4+ (H2 ^b and H2 ^d ligands)	3	92.2%	84.7%	78.1%	0
*	CD8+	3	95.8%	61.3%	58.7%	0
$*^d$	CD8+ (H2 ^d ligands)	3	95.1%	76.2%	72.5%	0
**	CD8+ (H2 ^b ligands)	3	95.8%	61.3%	58.7%	0
$*^{bd}$	CD8+ (H2 ^b and H2 ^d ligands)	3	94.7%	72.6%	68.8%	0
۲	B-Cell/CD4+/CD8+	3	88.9%	62.7%	55.7%	3
0	B-Cell/CD4+	3	88.9%	62.7%	55.7%	3
\bigcirc^d	B-Cell/CD4+ (H2 ^{d} ligands)	1	66.2%	39.9%	26.4%	1
00	B-Cell/CD4+ (H2 ^b ligands)	2	64.8%	39.4%	25.5%	2
	B-Cell/CD8+	3	90.8%	57.7%	52.4%	3
\mathbb{H}^d	B-Cell/CD8+ (H2 ^{d} ligands)	1	81.8%	38.4%	31.4%	1
(# ^b	B-Cell/CD8+ (H2 ^b ligands)	2	89.4%	46.5%	41.5%	2
\bullet	B-Cell/CD8+ (H2 ^{b} and H2 ^{d} ligands)	1	81.8%	38.4%	31.4%	1
	B-Cell	3	81.8%	52.8%	43.2%	3

Combined vaccine peptide set

	Sequence	Protein	Start	End	B-cell Epitope Region	HLA-I Coverage	HLA-II Coverage	$\mathrm{H2}^{b}$ I	$\mathrm{H2}^{b}$ II	$\mathrm{H2}^d$ I	H2 ^d II	Selection Sets
												* ** *d ***d
1	LLQFAYANRNRFLYIIKLIFLWLLWPV	Μ	34	60		89.0%	36.0%	+	+	+	+	⊙ o ^d o ^{bd} ⊛
												. Carter and a start and a start a st
2	PVTLACFVLAAVYRINWITGGIAIAMA	M	59	85		42.0%	76.0%	+	+	-	+	06
3	YFIASFRLFARTRSMWSFNPETNILLN	M	95	121		78.0%	53.0%	+	+	+	+	(*) ^{bd}
4	KDLSPRWYFYYLGTGPEAGLPYGANKD	N	102	128		49.0%	39.0%	+	+	+	-	* * ^b * ^d
5	WPQIAQFAPSASAFFGMSRIGMEVTPS	N	301	327		63.0%	61.0%	+	+	+	+	obd &d .
6	AQFAPSASAFFGMSRIGMEVTPSGTWL	N	305	331		71.0%	57.0%	+	+	+	-	۰. ۲
7	SASAFFGMSRIGMEVTPSGTWLTYTGA	N	310	336		76.0%	45.0%	+	-	+	-	*bd
8	VTPSGTWLTYTGAIKLDDKDPNFKDQV	N	324	350		50.0%	62.0%	+	+	-	-	06
9	POROKKOOTVTLLPAADLDDFSKQLQQ	N	383	409		11.0%	52.0%	-	-		+	o od ®
10	YPDKVFRSSVLHSTQDLFLPFFSNVTW	S	38	64		44.0%	52.0%	-	+	+	+	$^{^{(\!\!\!\!)}}$
11	GAAAYYVGYLOPRTFLLKYNENGTITD	S	261	287		88.0%	38.0%	+	+	+	-	*bd
12	SETKCTLKSFTVEKGIYQTSNFRVQPT	S	297	323		54.0%	52.0%	-	-	+	-	*4
13	GLTVLPPLLTDEMIAQYTSALLAGTIT	S	857	883		66.0%	73.0%	+	+	+	+	* * * * * * * * * * * * * * * * * * *
14	SVLNDILSRLDKVEAEVQIDRLITGRL	S	975	1001		72.0%	28.0%	+	2	-	-	***
15	RLOSLOTYVTOQLIRAAEIRASANLAA	S	1000	1026		54.0%	81.0%		+	+	+	o od obobd
16	GNYNYLYRLFRKSNLKPFERDISTEIY	S	447	473	456-FRKSNLKPFERDISTEIY-473	82.0%	38.0%	+	-	+	-	***
17	YLYRLFRKSNLKPFERDISTEIYQAGS	S	451	477	456-FRKSNLKPFERDISTEIY-473	78.0%	46.0%	+		-		00
18	FRKSNLKPFERDISTEIYOAGSTPCNG	S	456	482	456-FRKSNLKPFERDISTEIY-473	46.0%	30.0%	-	+	-		[0] ^b
19	KFLPFQQFGRDIADTTDAVRDPQTLEI	S	558	584	sao-QTLE-sa3	0.0%	0.0%	-	2	-		
20	POTLEILDITPCSFGGVSVITPGTNTS	S	579	605	sao-QTLE-583	13.0%	21.0%	-				
21	IYKTPPIKDFGGFNFSQILPDPSKPSK	S	788	814	809-PSKP-812	35.0%	23.0%		+			
22	PSKPSKRSFIEDLLFNKVTLADAGFIK	s	809	835	809-PSKP-812	66.0%	40.0%	+	-	-	+	E E ⁶ 90 ^d

Overview

- Cancer immunotherapy & personalized cancer vaccines
- OpenVax personalized cancer vaccine clinical trials
- Do personalized cancer vaccines work?
- Peptide vaccines for SARS-CoV-2
- Current work: Peptide vaccine optimization
- Current work: Immunogenicity prediction
- Future: Back to cancer

Can we make precise vaccination work for SARS-CoV-2?

- Baseline vaccines:
 - Soluble long peptides
 (or recombinant spike)
 + Poly(I:C)
- Find better adjuvant + antigen combination
 - Circular peptides more stable, restricted conformations
 - MAPS = branched peptides

Antigen

Soluble Poly(I:C) lona peptides Poly(I:C) + Montanide Circular **ISA 51** peptides Peptides Liposomal conjugated QS21 + to carrier MPL-A protein Multiple CGAMP Antigen Peptides (MAPs) **R-DOTAP** Recombinant spike protein

Adjuvant

Challenge / Protection (Heise Lab)

- Vaccine candidates with strong T-cell or B-cell responses repeated and tested for:
 - Neutralization
 - Protection from
 challenge with murine
 adapted SARS-CoV-2

• Vaccine & Cell Therapy Lab at Mount Sinai interested in starting a trial based on successful candidates, but hopefully not necessary

First experiments (w/ Vincent Lab)

- 27mer peptides + Poly(I:C)
- BALB/c mice
- T-cell responses (ICS) & Ab binding to spike (ELISA)
- Do vaccine peptides compete other?
 - A (n=5): T-cell
 - B (n=5): T-cell
 - C (n=10): A+B
 - D (n=6): B-cell

	SARSCOV	2 20-121 0 002	5	Ν	Day						
			n	1	7	1	4	21			
	Group	Peptide	Adjuvant		\checkmark	$\mathbf{+}$		\checkmark	\checkmark		
	1	Set A		6							
Cell	2	Set B	Polv IC + M	6	Vaccinate	Cheek Bleed	Cheek Bleed	Boost	Sacc		
Ť	3	Set C (Set A + B)	,	6							
						↓ Serum	↓ Serum		↓ Serum	↓ Spleen	
						Freeze	Freeze		Freeze	Elispot	
Cell	4	Set A + Set D		6							
ell + B (5	Set B+ Set D	Debuic - M	6	5 5 6	Cheek Bleed	Cheek Bleed	Boost	Sacc		
тс	6	Set C + Set D		6							
slo	Measles	Measles		6							
ntro	Adjuvant Only	None									
S	Control	PE	S	3							
				Tissue		↓ Serum	↓ Serum		↓ Serum	↓ Spleen	
				Assay		ELISA (peptide)	ELISA (peptide)		ELISA (peptide) ELISA	Elispot	

Using mass spec data: not enough

- NetMHCpan 4.0 has 2 outputs:
 - EL: Trained on mass spec data
 - BA: Binding affinity
- Can also use percentile of EL or BA
- Affinity predictive for viral epitopes

Virus	Count	% Positive
Dengue Virus	1140	98.6%
Hepacivirus C	943	75.9%
Human betaherpesvirus 5	772	81.7%
Human gammaherpesvirus 4	779	90.0%
Influenza A virus	669	90.9%
Vaccinia virus	21,899	1.2%

