
Precision vaccine design from cancer to SARS-CoV-2 and back

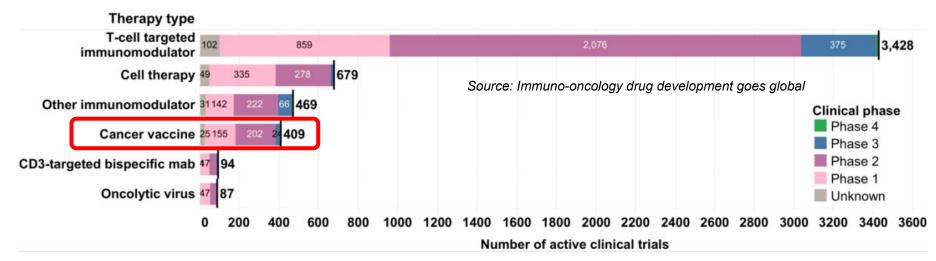
Alex Rubinsteyn September 14th, 2020 LCCC Faculty Lunch

SCHOOL OF MEDICINE

Overview

- Cancer immunotherapy & personalized cancer vaccines
- Personalized cancer vaccine clinical trials at Mount Sinai
- OpenVax pipeline for selecting vaccines
- Do personalized cancer vaccines work?
- Peptide vaccines for SARS-CoV-2

Flavors of cancer immunotherapy

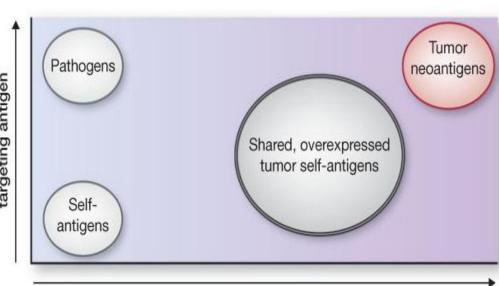

Checkpoint blockade	Cellular therapies	Vaccines
Disinhibit T-cells. Antigens responsible for tumor clearance typically unknown.	Ex-vivo expansion of patient T-cells after receptor engineering and/or selection.	Therapeutic vaccines against specific tumor antigens, including patient-specific mutated tumor antigens.
 Success stories: αCTLA-4 (ipi) αPD-1 (pembro, nivo, cemi) αPD-L1 (atezo, ave, durva) 	 <u>Success stories:</u> CAR T-cells for B-cell malignancies (CD19, CD20, CD22, BCMA) 	 Success stories: ??? Hints of efficacy in neoantigen vaccine trials

Shared antigen vaccines unsuccessful

Cancer type	Vaccine	Total patients	Patients responding
Melanoma	Tyrosinase + GMCSF	16	0
Melanoma	Peptides in IFA or on DC	26	3
Melanoma	MART-1 + IL-12	28	2
Prostate	Peptides	10	0
Melanoma	Peptides on PBMC + IL-12	20	2
Breast and prostate	Telomerase	7	0
Cervix	HPV16 E7	17	0
Colorectal	Peptides in IFA	10	0
Multiple	NY-ESO-1	12	0
Multiple	Ras in DETOX adjuvant	15	0
Multiple	Peptides in IFA	14	0
Prostate	Vaccinia-PSA	33	0
Prostate	Vaccinia-PSA	42	0
Colorectal	Vaccinia-CEA	20	0
Colorectal	Vaccinia-CEA and B7-1	18	0
Multiple	Avipox-CEA(IGMCSF)	60	0
Multiple	Avipox-CEA	15	0
Multiple	Vaccinia + avipox-CEA	18	0

Cancer immunotherapy: moving beyond current vaccines

...vaccines are back!


- >\$1B invested in cancer vaccine startups, e.g.
 - Gritstone
 - BioNTech
 - Genocea

Neoantigens

- No overlap with normal
 - mutations
 - abnormal splicing
 - abnormal
 post-translational
 modifications
- Unlikely to be shared between patients

cells ack of central tolerance for targeting antigen

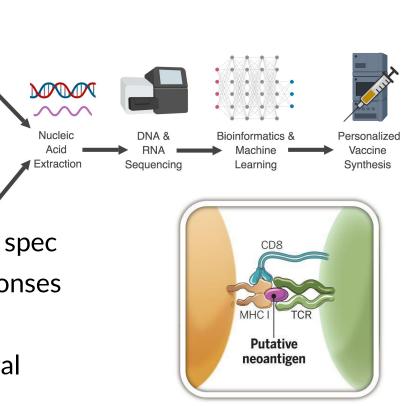
Tumor-specific expression of antigen

Neoantigen vaccination

Cancer

Tissue

Patient's


Norma

• Inputs

- Tumor + Normal DNA
- Tumor RNA

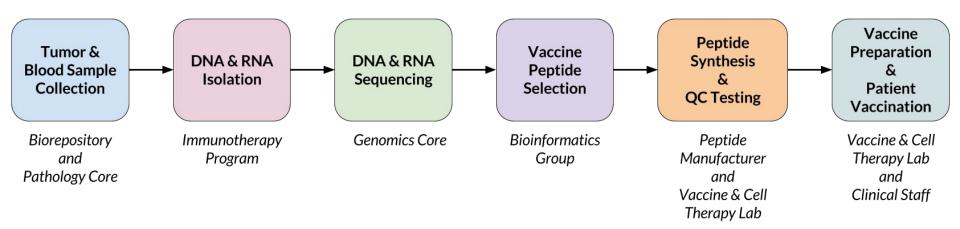
• Selection

- Predict mutated epitopes
- and/or: identify MHC ligands w/ mass spec
- \circ and/or: screen for existing T cell responses
- Vaccine
 - Peptides + adjuvant, mRNA, DNA, viral vector, bacterial vector, &c

Schumacher & Schreiber 2015

Overview

- Cancer immunotherapy & personalized cancer vaccines
- Personalized cancer vaccine trials at Mount Sinai
- OpenVax pipeline for selecting vaccines
- Do personalized cancer vaccines work?
- Peptide vaccines for SARS-CoV-2

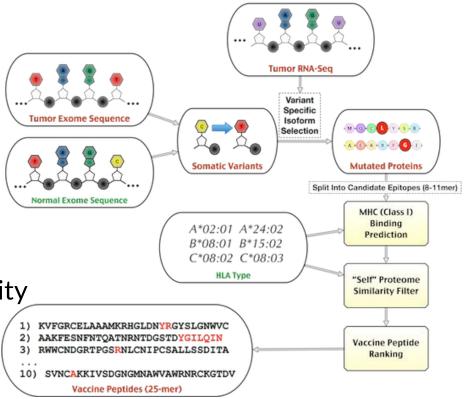

Clinical trials at Mount Sinai

- **PGV001** (Nina Bhardwaj)
 - Solid cancers, multiple myeloma
 - Long peptides + poly-ICLC
 - 13 vaccinated
- **PGV for GBM** (Adilia Hormigo)
 - + TMZ, Tumor Treating Fields
 - 8 vaccinated
- **PGV for Bladder Cancer** (*Matt Galsky*)
 - + Atezolizumab (anti-PD-L1)
 - 3 vaccinated

Shared design:

- Up to 10 peptides
- Each peptide has up to
 25 amino acids
- 10+ injections per trial over 6 months
- Adjuvant: poly-ICLC

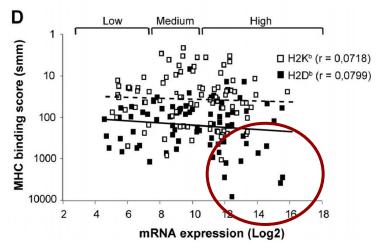
Trial logistics


- 1-2 weeks from surgery to sequencing data
- 1 week to run computational pipeline and manually review results
- 6-8 weeks peptide synthesis
- 10 immunizations over 6 months

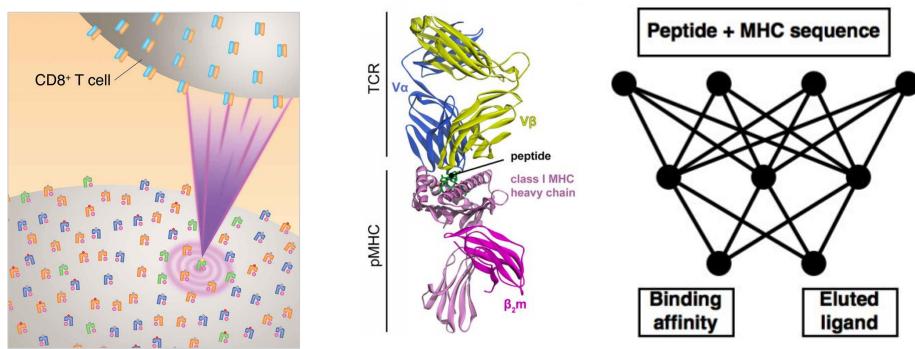
Overview

- Cancer immunotherapy & personalized cancer vaccines
- Personalized cancer vaccine trials at Mount Sinai
- OpenVax pipeline for selecting vaccines
- Do personalized cancer vaccines work?
- Peptide vaccines for SARS-CoV-2

OpenVax Pipeline overview


- Tumor + normal DNA
 - Somatic variant calling
- Tumor RNA
 - Phase co-expressed variants
 - Mutant protein sequence
 - Quantify mut. allele expression
- Rank by expression and MHC-I affinity
- Select manufacturable peptides
- <u>www.github.com/openvax/</u>

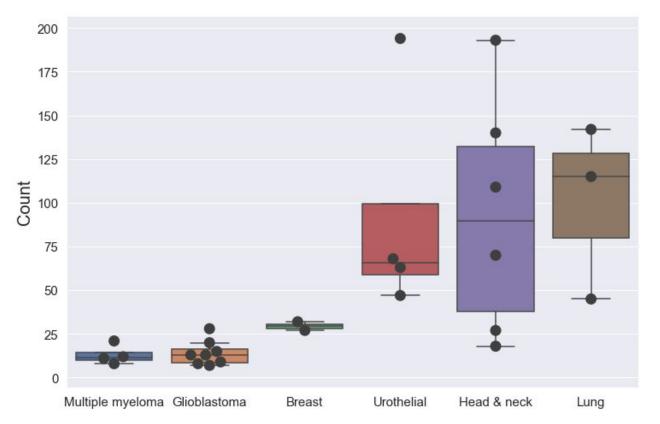
Vaccine peptide ranking


 Multiplicative ranking inspired by T cell epitopes which have low MHC affinity but high abundance

 $\begin{aligned} \text{TotalScore} &= \text{ExpressionScore} \cdot \text{BindingScore} \\ \text{ExpressionScore} &= \sqrt{\# \text{ supporting reads}} \\ \text{BindingScore} &= \sum_{p}^{\text{mutant peptides alleles}} \sum_{mhc} \sigma(\text{IC50}(p, mhc)) \\ \sigma(x) &= \exp(-\frac{x-150}{350}) \end{aligned}$

The MHC class I peptide repertoire is molded by the transcriptome (2008)

MHC binding prediction

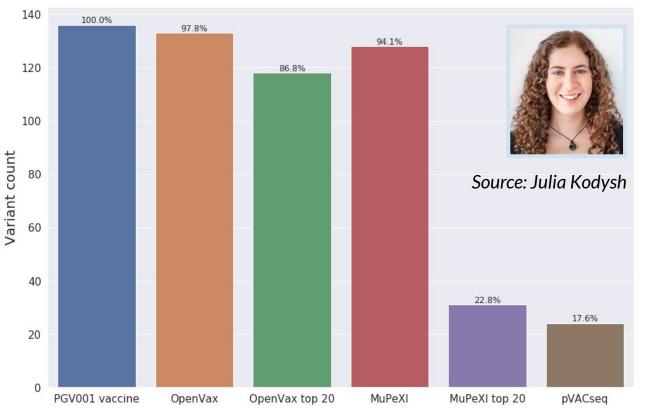


Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy

Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands

NetMHCpan 4.0

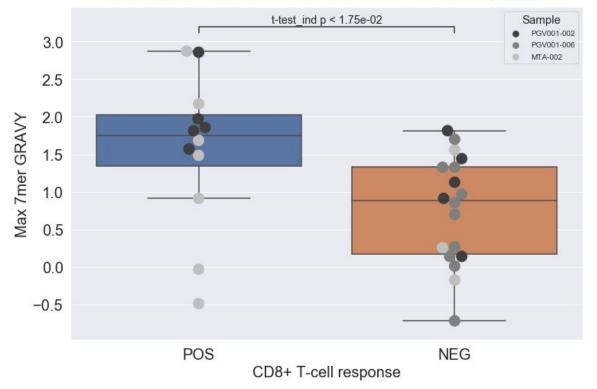
Do we get enough mutations?



Source: Julia Kodysh

Concordance of neoantigen pipelines

How many of the PGV001 trial vaccine variants (n=136) are predicted by different neoantigen prediction tools?



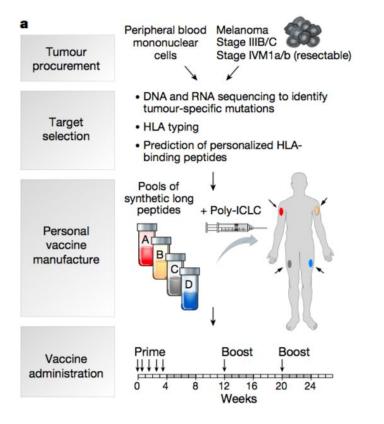
Overview

- Cancer immunotherapy & personalized cancer vaccines
- Personalized cancer vaccine trials at Mount Sinai
- OpenVax pipeline for selecting vaccines
- Do personalized cancer vaccines work?
- Peptide vaccines for SARS-CoV-2

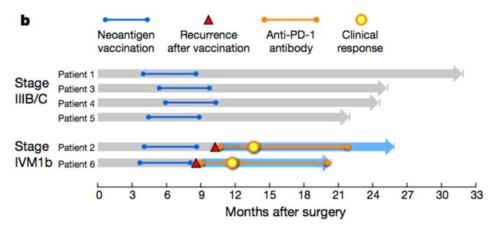
Hydrophobicity vs CD8+ response

Max 7mer GRAVY score vs. CD8+ T-cell response

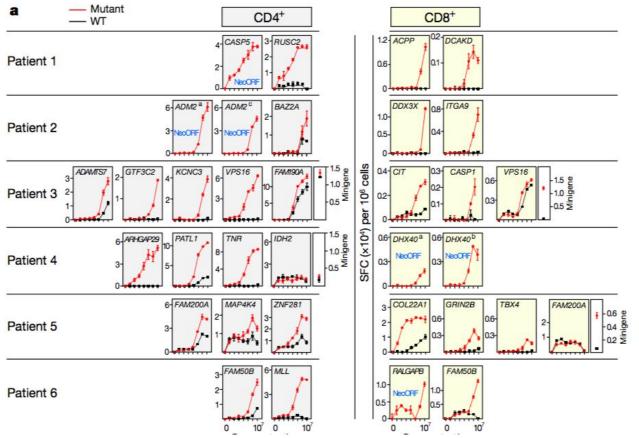
Source: Julia Kodysh


Peptides + poly-ICLC @ DFCI (2017)

An immunogenic personal neoantigen vaccine for patients with melanoma


Patrick A. Ott^{1,2,3*}, Zhuting Hu^{1*}, Derin B. Keskin^{1,3,4}, Sachet A. Shukla^{1,4}, Jing Sun¹, David J. Bozym¹, Wandi Zhang¹, Adrienne Luoma⁵, Anita Giobbie–Hurder⁶, Lauren Peter^{7,8}, Christina Chen¹, Oriol Olive¹, Todd A. Carter⁴, Shuqiang Li⁴, David J. Lieb⁴, Thomas Eisenhaure⁴, Evisa Gjini⁹, Jonathan Stevens¹⁰, William J. Lane¹⁰, Indu Javeri¹¹, Kaliappanadar Nellaiappan¹¹, Andres M. Salazar¹², Heather Daley¹, Michael Seaman⁷, Elizabeth I. Buchbinder^{1,2,3}, Charles H. Yoon^{3,13}, Maegan Harden⁴, Niall Lennon⁴, Stacey Gabriel⁴, Scott J. Rodig^{9,10}, Dan H. Barouch^{3,7,8}, Jon C. Aster^{3,10}, Gad Getz^{3,4,14}, Kai Wucherpfennig^{3,5}, Donna Neuberg⁶, Jerome Ritz^{1,2,3}, Eric S. Lander^{3,4}, Edward F. Fritsch^{1,4}†, Nir Hacohen^{3,4,15} & Catherine J. Wu^{1,2,3,4}

- 6 (stage III & IV) melanoma patients
- Up to 20 mutated peptides per vaccine
- Adjuvant: Poly-ICLC


Peptides + poly-ICLC: Tumor control?

Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells.

Peptides + poly-ICLC: T Cell responses


Peptides + poly-ICLC for GBM @ DFCI (2018)

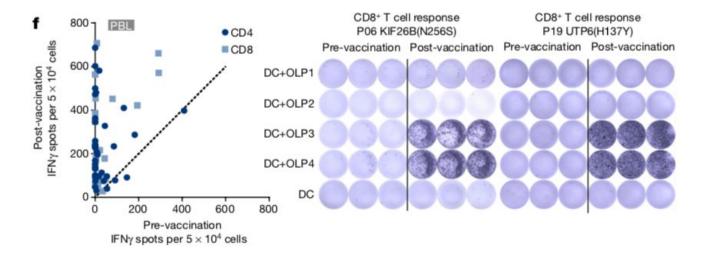
Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial

Derin B. Keskin^{1,2,3,4,5,19}, Annabelle J. Anandappa^{1,4,19}, Jing Sun^{1,19}, Itay Tirosh^{3,6,19}, Nathan D. Mathewson^{4,7,19}, Shuqiang Li^{3,5}, Giacomo Oliveira¹, Anita Giobbie–Hurder⁸, Kristen Felt⁹, Evisa Gjini⁹, Sachet A. Shukla^{1,5}, Zhuting Hu¹, Letitia Li¹, Phuong M. Le¹, Rosa L. Allesøe^{1,10}, Alyssa R. Richman^{3,4,11,12}, Monika S. Kowalczyk³, Sara Abdelrahman⁹, Jack E. Geduldig¹³, Sarah Charbonneau¹³, Kristine Pelton¹³, J. Bryan Iorgulescu^{1,4,14}, Liudmila Elagina³, Wandi Zhang¹, Oriol Olive¹, Christine McCluskey¹, Lars R. Olsen¹⁰, Jonathan Stevens¹⁴, William J. Lane^{4,14}, Andres M. Salazar¹⁵, Heather Daley¹, Patrick Y. Wen^{1,4,16}, E. Antonio Chiocca^{4,17}, Maegan Harden³, Niall J. Lennon³, Stacey Gabriel³, Gad Getz^{3,4,12}, Eric S. Lander³, Aviv Regev³, Jerome Ritz^{1,2,4}, Donna Neuberg⁸, Scott J. Rodig^{4,9,14}, Keith L. Ligon^{3,4,13,14}, Mario L. Suvà^{3,4,11,12}, Kai W. Wucherpfennig^{4,7}, Nir Hacohen^{3,4,12}, Edward F. Fritsch^{1,3,18}, Kenneth J. Livak^{1,5}, Patrick A. Ott^{1,2,4}, Catherine J. Wu^{1,2,3,4} & David A. Reardon^{1,2,4}*

- 10 enrolled glioblastoma patients, 8 w/ enough mutations
- All eight vaccinated patients eventually died
- 6/8 were given steroids during priming: no T-cell responses!

GBM 2018: steroids during priming = bad

mRNA vaccine @ BioNTech (2017)


Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

Ugur Sahin^{1,2,3}, Evelyna Derhovanessian¹, Matthias Miller¹, Björn-Philipp Kloke¹, Petra Simon¹, Martin Löwer², Valesca Bukur^{1,2}, Arbel D. Tadmor², Ulrich Luxemburger¹, Barbara Schrörs², Tana Omokoko¹, Mathias Vormehr^{1,3}, Christian Albrecht², Anna Paruzynski¹, Andreas N. Kuhn¹, Janina Buck¹, Sandra Heesch¹, Katharina H. Schreeb¹, Felicitas Müller¹, Inga Ortseifer¹, Isabel Vogler¹, Eva Godehardt¹, Sebastian Attig^{2,3}, Richard Rae², Andrea Breitkreuz¹, Claudia Tolliver¹, Martin Suchan², Goran Martic², Alexander Hohberger³, Patrick Sorn², Jan Diekmann¹, Janko Ciesla⁴, Olga Waksmann⁴, Alexandra-Kemmer Brück¹, Meike Witt¹, Martina Zillgen¹, Andree Rothermel², Barbara Kasemann², David Langer¹, Stefanie Bolte¹, Mustafa Diken^{1,2}, Sebastian Kreiter^{1,2}, Romina Nemecek⁵, Christoffer Gebhardt^{6,7}, Stephan Grabbe³, Christoph Höller⁵, Jochen Utikal^{6,7}, Christoph Huber^{1,2,3}, Carmen Loquai³* & Özlem Türeci⁸*

- 13 (stage III & IV) melanoma patients
- 10 mutated sequences encoded in mRNA
- Ultrasound guided injection of mRNA into lymph nodes

mRNA 2017: T cell responses

- ~20% mutations had ex vivo CD4+ responses
- ~50% mutations had CD4+ responses after in vitro stim
- ~25% mutations had CD8+ responses after in vitro stim

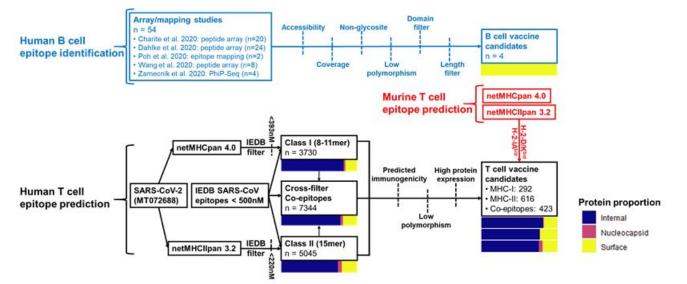
mRNA 2017: Tumor control

- 8/13 patients had no measurable lesions before vaccination
 - Remained disease free throughout monitoring period
- 5 patients had growing lesions before vaccination
 - 1 patient: complete response
 - 1 patient: stable disease
 - 1 patient: complete response after treatment with anti-PD1
 - 1 patient had partial response until tumor cells lost B2M
- ~20% mutations had ex vivo CD4+ responses
- ~50% mutations had CD4+ responses after in vitro stim
- ~25% mutations had CD8+ responses after in vitro stim

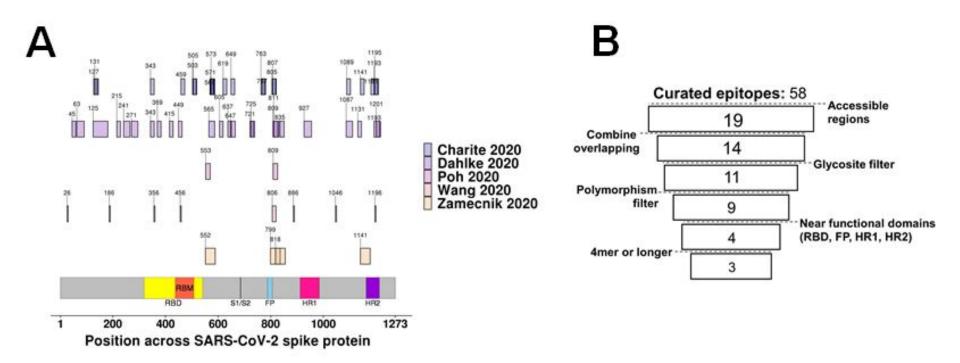
Personalized Cancer Summary

- Existing vaccines elicit (weak) T cell responses vs. neoAg
 - CD4+ responses much stronger than CD8+
- Hint of efficacy, especially with α PD-1 <u>after</u> vaccination
 - \circ NEO-PV-01 had α PD-1 before, drowns out effect of vaccine
- Past clinical trials focused on SNVs + small indels, field looking more at "dark matter" (SVs, splicing, hERVs, &c)
- Hard to compare neoantigen selection algorithms until vaccine platforms improve

Overview

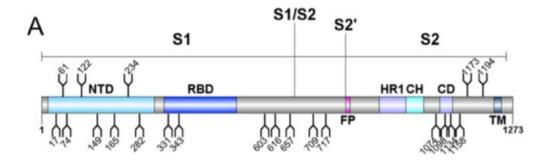

- Cancer immunotherapy & personalized cancer vaccines
- Personalized cancer vaccine clinical trials at Mount Sinai
- OpenVax pipeline for selecting vaccines
- Do personalized cancer vaccines work?
- Peptide vaccines for SARS-CoV-2

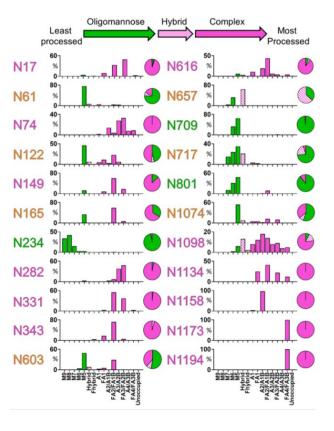
Peptide vaccines for pathogens


- Potential problems with whole virus or whole protein vaccination:
 - Diffuse T-cell responses; will immunodominant epitopes match presented epitopes of infected cells?
 - Responses to polymorphic regions of virus
 - Unlikely (but worrying) possibility of antibody dependent enhancement (ADE), mediated by non-neutralizing antibodies
- Potential benefits of peptide vaccines:
 - Fine-grained selection of antigenic content
- Limits:
 - Can't target conformational B-cell epitopes! (only linear)
 - Only a few effective prophylactic peptide vaccines (e.g. FMDV)

Integrating Predicted T-Cell Epitopes With Measured Linear B-cell Epitopes

- Predict SARS-CoV-2 MHC binding for Class I & II alleles covering US population
 - Filter by predicted T-cell immunogenicity, protein abundance, polymorphic sites
- Combine w/ measured B-cell epitopes from convalescent patient plasma
 - Filter by accessibility, non-glycosylation, annotated functional regions on spike protein


Curated Linear B-cell Epitope Data Sources



Source for Glycosites (Watanabe et al.)

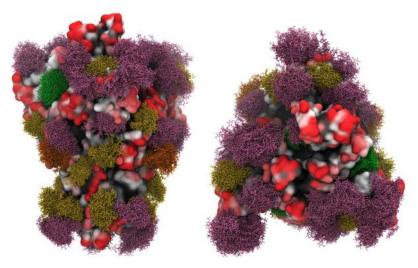
Site-specific analysis of the SARS-CoV-2 glycan shield

Yasunori Watanabe^{1,2,3#}, Joel D. Allen^{1#}, Daniel Wrapp⁴, Jason S. McLellan⁴, Max Crispin^{1*}

Polymorphic Sites

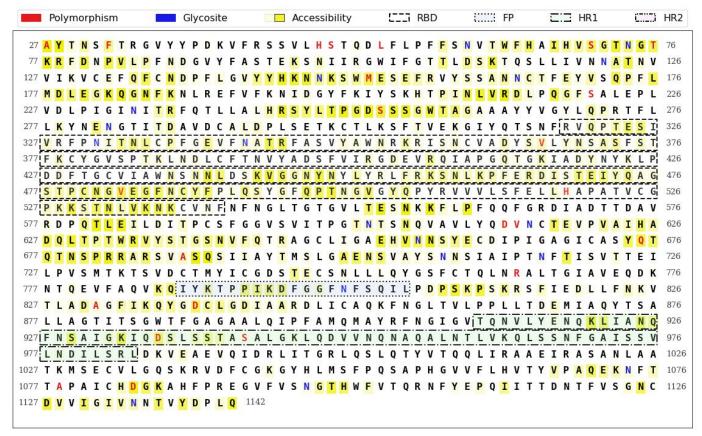
- Collected all SARS-CoV-2 sequences in Nextstrain
- >0.1% frequency
- 28 sites
- Most common: D614G (~50%)

Source for Accessibility (Grant et al.)


3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development

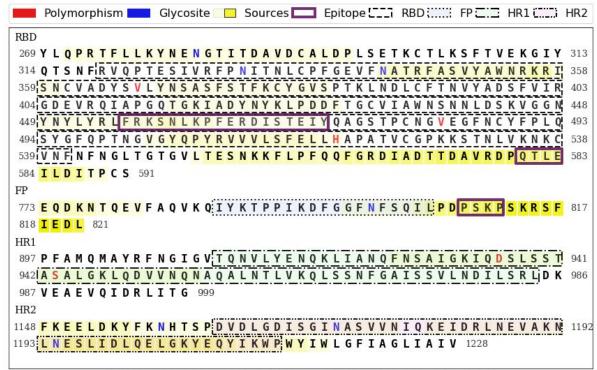
Oliver C. Grant, David Montgomery, Keigo Ito, Robert J. Woods*

Table 1. SARS-CoV-2 S glycoprotein antigenic surface areas (Å²) as a function of


Glycoform	Average antibody accessible surface area (AbASA) ^a	Exposed fraction of AbASA
M3	58,579 ± 2.8%	0.71
	44,184 ± 1.1%	0.53
	► 45,571 ± 1.6%	0.55
Complex Core F	43,943 ± 2.0%	0.53
HEK293 site-specific glycosylation	$48,322 \pm 0.7\%$	0.58
Non-glycosylated	$83,041 \pm 2.8\%$	1.00

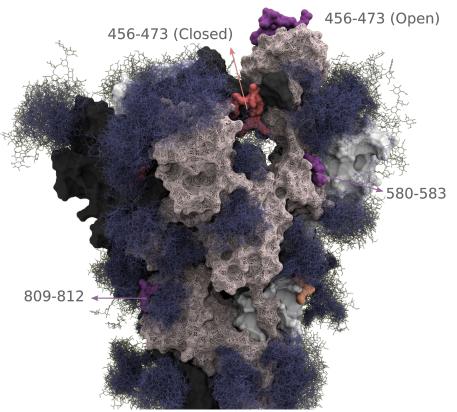
^aSurface areas were computed with the Naccess software ⁶⁸, version 2.1.1.

27
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37
 37

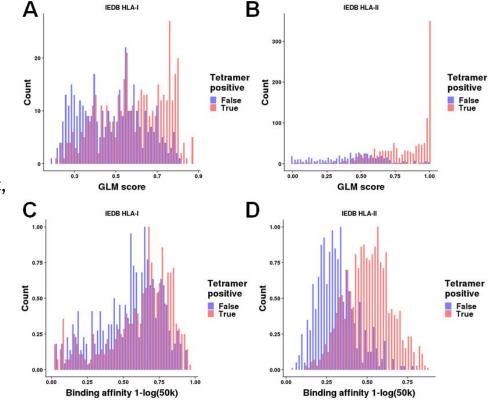

Accessible residues near functional features

Only 3 B-cell linear epitopes regions

Filters:


- >=4mer region
- Accessibility > 25%
- Does not contain glycosites
- Does not contain polymorphic sites
- Within 50aa of RBD or 15aa of fusion peptide (FP) or HR1/HR2 regions

Number of data sources supporting each residue as antibody epitope


Location of predicted linear B-cell epitopes

- **\$580-583**: downstead of RBD, target of known neutralizing antibody
- **S809-812**: adjacent to fusion peptide, occurs in a 5 B-cell epitope datasets
- **S456-473**: RBM loop which contacts ACE2, only accessible when RBD in open conformation

T-Cell Immunogenicity Prediction

- Constructed CD4+ & CD8+ immunogenicity models from IEDB tetramer data
 - Model = logistic regression
- Features
 - % amino acids {aromatic, acidic, basic, cyclic, thiols}
 - MHC binding & presentation
 - CD8+: NetMHCpan & MHCflurry
 - CD4 +: NetMHCIIpan
 - CD8+: MHCflurry processing score

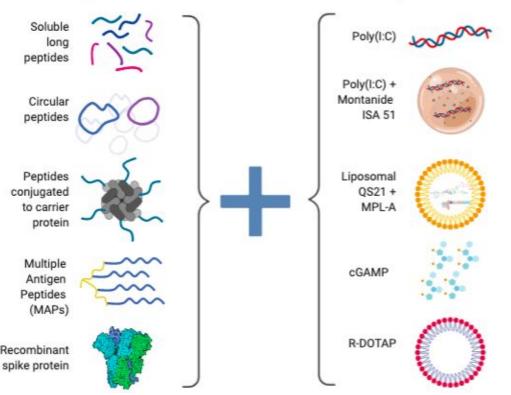
Compact peptide sets for different selection criteria

Symbol	Set	# Peptides	HLA-I Coverage	HLA-II Coverage	Total Coverage	# B-cell Epitope Regions
۲	CD4+/CD8+	4	92.2%	88.5%	81.6%	0
$^{(*)^d}$	CD4+/CD8+ (H2 ^d ligands)	4	93.8%	84.7%	79.5%	0
$^{(*)}b$	CD4+/CD8+ (H2 ^b ligands)	3	92.2%	84.7%	78.1%	0
$^{(*)}$	CD4+/CD8+ (H2 ^b and H2 ^d ligands)	4	92.1%	84.7%	78.0%	0
0	CD4+	3	91.3%	88.5%	80.8%	0
od	CD4+ (H2 ^d ligands)	3	91.3%	88.5%	80.8%	0
00	CD4+ (H2 ^b ligands)	3	76.8%	84.7%	65.0%	0
obd	CD4+ (H2 ^b and H2 ^d ligands)	3	92.2%	84.7%	78.1%	0
*	CD8+	3	95.8%	61.3%	58.7%	0
*d	CD8+ (H2 ^d ligands)	3	95.1%	76.2%	72.5%	0
**	CD8+ (H2 ^b ligands)	3	95.8%	61.3%	58.7%	0
*bd	CD8+ (H2 ^b and H2 ^d ligands)	3	94.7%	72.6%	68.8%	0
۲	B-Cell/CD4+/CD8+	3	88.9%	62.7%	55.7%	3
0	B-Cell/CD4+	3	88.9%	62.7%	55.7%	3
od	B-Cell/CD4+ (H2 ^{d} ligands)	1	66.2%	39.9%	26.4%	1
06	B-Cell/CD4+ (H2 ^b ligands)	2	64.8%	39.4%	25.5%	2
	B-Cell/CD8+	3	90.8%	57.7%	52.4%	3
* ^d	B-Cell/CD8+ (H2 ^{d} ligands)	1	81.8%	38.4%	31.4%	1
* ^b	B-Cell/CD8+ (H2 ^b ligands)	2	89.4%	46.5%	41.5%	2
* bd	B-Cell/CD8+ (H2 ^{b} and H2 ^{d} ligands)	1	81.8%	38.4%	31.4%	1
	B-Cell	3	81.8%	52.8%	43.2%	3

Combined vaccine peptide set

	Sequence	Protein	Start	End	B-cell Epitope Region	HLA-I Coverage	HLA-II Coverage	$\mathrm{H2}^{b}$ I	$\mathrm{H2}^{b}$ II	$\mathrm{H2}^d$ I	$\mathrm{H2}^d$ II	Selection Sets
						10.01						* * ^b * ^d * ^{bd}
1	LLQFAYANRNRFLYIIKLIFLWLLWPV	М	34	60		89.0%	36.0%	+	+	+	+	o o ^d o ^{bd} ⊛ ⊛ ^d ⊛ ^b ⊛ ^{bd}
2	PVTLACFVLAAVYRINWITGGIAIAMA	M	59	85		42.0%	76.0%	+	+	120	+	06
3	YFIASFRLFARTRSMWSFNPETNILLN	M	95	121		78.0%	53.0%	+	+	+	+	(1) bd
4	KDLSPRWYFYYLGTGPEAGLPYGANKD	N	102	128		49.0%	39.0%	+	+	+	-	* * ^b * ^d
5	WPQIAQFAPSASAFFGMSRIGMEVTPS	N	301	327		63.0%	61.0%	+	+	+	+	obd &d &bd
6	AQFAPSASAFFGMSRIGMEVTPSGTWL	N	305	331		71.0%	57.0%	+	+	+	-	***
7	SASAFFGMSRIGMEVTPSGTWLTYTGA	N	310	336		76.0%	45.0%	+	-	+	-	*bd
8	VTPSGTWLTYTGAIKLDDKDPNFKDQV	N	324	350		50.0%	62.0%	+	+	-	-	06
9	PQRQKKQQTVTLLPAADLDDFSKQLQQ	N	383	409		11.0%	52.0%	-	-		+	o o ^d ®
10	YPDKVFRSSVLHSTQDLFLPFFSNVTW	S	38	64		44.0%	52.0%	-	+	+	+	$^{^{(2)}}$
11	GAAAYYVGYLQPRTFLLKYNENGTITD	S	261	287		88.0%	38.0%	+	+	+	-	*bd
12	SETKCTLKSFTVEKGIYQTSNFRVQPT	S	297	323		54.0%	52.0%	-	-	+		*4
13	GLTVLPPLLTDEMIAQYTSALLAGTIT	S	857	883		66.0%	73.0%	+	+	+	+	* * * * *
14	SVLNDILSRLDKVEAEVQIDRLITGRL	S	975	1001		72.0%	28.0%	+	-	-	-	** ^b
15	RLQSLQTYVTQQLIRAAEIRASANLAA	S	1000	1026		54.0%	81.0%		+	+	+	o od obobd
16	GNYNYLYRLFRKSNLKPFERDISTEIY	S	447	473	456-FRKSNLKPFERDISTEIY-473	82.0%	38.0%	+	2	+	-	¥ ¥ ^d ¥ ^b # ^{bd}
17	YLYRLFRKSNLKPFERDISTEIYQAGS	S	451	477	456-FRKSNLKPFERDISTEIY-473	78.0%	46.0%	+		-		- 0 🛞
18	FRKSNLKPFERDISTEIYQAGSTPCNG	S	456	482	456-FRKSNLKPFERDISTEIY-473	46.0%	30.0%	-	+	-		06
19	KFLPFQQFGRDIADTTDAVRDPQTLEI	S	558	584	seo-QTLE-sea	0.0%	0.0%	-	-	-		
20	PQTLEILDITPCSFGGVSVITPGTNTS	S	579	605	580-QTLE-583	13.0%	21.0%					• •
21	IYKTPPIKDFGGFNFSQILPDPSKPSK	S	788	814	809-PSKP-812	35.0%	23.0%		+			
22	PSKPSKRSFIEDLLFNKVTLADAGFIK	s	809	835	809-PSKP-812	66.0%	40.0%	+		-	+	• • 60 ^d

Validation in Multiple SARS-CoV-2 T-cell Studies


	Sequence	Protein	Start	End	B-cell Epitope Region	HLA-I Coverage	HLA-II Coverage	$\mathrm{H2}^{b}$ I	$\mathrm{H2}^{b}$ II	$\mathrm{H2}^d$ I	$\mathrm{H2}^{d}$ II	Selection Sets
												* * ^b * ^d * ^{bd}
1	LLQFAYANRNRFLYIIKLIFLWLLWPV	Μ	34	60		89.0%	36.0%	+	+	+	+	o od obd @
												$\circledast^d \circledast^b \circledast^{bd}$
2	PVTLACFVLAAVYRINWITGGIAIAMA	M	59	85		42.0%	76.0%	+	+	-	+	0.6
3	YFIASFRLFARTRSMWSFNPETNILLN	M	95	121		78.0%	53.0%	+	+	+	+	(a) ^{bd}
4	KDLSPRWYFYYLGTGPEAGLPYGANKD	N	102	128		49.0%	39.0%	+	+	+	-	* * ^b * ^d
5	WPQIAQFAPSASAFFGMSRIGMEVTPS	N	301	327		63.0%	61.0%	+	+	+	+	obd &d Bpd
6	AQFAPSASAFFGMSRIGMEVTPSGTWL	N	305	331		71.0%	57.0%	+	+	+	-	۲. الله الله الله الله الله الله الله الل
7	SASAFFGMSRIGMEVTPSGTWLTYTGA	N	310	336		76.0%	45.0%	+	-	+	-	* ^{bd}
8	VTPSGTWLTYTGAIKLDDKDPNFKDQV	N	324	350		50.0%	62.0%	+	+	-	-	06
9	POROKKOOTVTLLPAADLDDFSKQLQQ	N	383	409		11.0%	52.0%	-	-		+	o o ^d ®
10	YPDKVFRSSVLHSTODLFLPFFSNVTV	S	38	64		44.0%	52.0%	2	+	+	+	$^{\otimes}d$
11	GAAAYYVGYLQPRTFLLKYNENGTITD	S	261	287		88.0%	38.0%	+	+	+	-	*bd
12	SETKCTLKSFTVEKGIYOTSNFRVOPT	S	297	323		54.0%	52.0%			+		* ^d
13	GLTVLPPLLTDEMIAQYTSALLAGTIT	S	857	883		66.0%	73.0%	+	+	+	+	* *d *b*bd
14	SVLNDILSRLDKVEAEVQIDRLITGRL	S	975	1001		72.0%	28.0%	+	-	-	-	** ^b
15	RLQSLQTYVTQQLIRAAEIRASANLAA	S	1000	1026		54.0%	81.0%		+	+	+	o od obobd
16	GNYNYLYRLFRKSNLKPFERDISTEIY	S	447	473	456-FRKSNLKPFERDISTEIY-473	82.0%	38.0%	+	-	+	-	∎∎ ^d ∎ ^b ∎ ^{bd}
17	YLYRLFRKSNLKPFERDISTEIYQAGS	S	451	477	456-FRKSNLKPFERDISTEIY-473	78.0%	46.0%	+				- 0 🛞
18	FRKSNLKPFERDISTEIYQAGSTPCNG	S	456	482	456-FRKSNLKPFERDISTEIY-473	46.0%	30.0%		+	-		@ ⁶
19	KFLPFQQFGRDIADTTDAVRDPQTLEI	S	558	584	sso-QTLE-sa3	0.0%	0.0%	-	-	-	-	
20	POTLEILDITPCSFGGVSVITPGTNTS	S	579	605	580-QTLE-583	13.0%	21.0%	-				• • •
21	IYKTPPIKDFGGFNFSQILPDPSKPSK	S	788	814	809-PSKP-812	35.0%	23.0%		+			
22	PSKPSKRSFIEDLLFNKVTLADAGFIK	s	809	835	809-PSKP-812	66.0%	40.0%	+	-	-	+	# # ⁶ 00 ^d

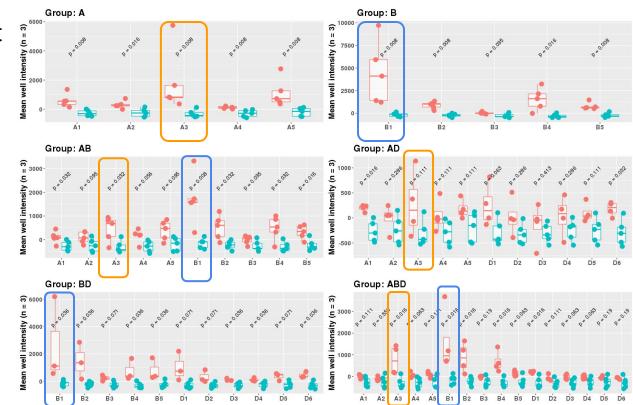
Can we make precise vaccination work for SARS-CoV-2?

- Baseline vaccines:
 - Soluble long peptides
 (or recombinant spike)
 + Poly(I:C)
- Find better adjuvant + antigen combination
 - Circular peptides more stable, restricted conformations
 - MAPS = branched peptides

Antigen

Adjuvant

First Experiments (w/ Vincent Lab)

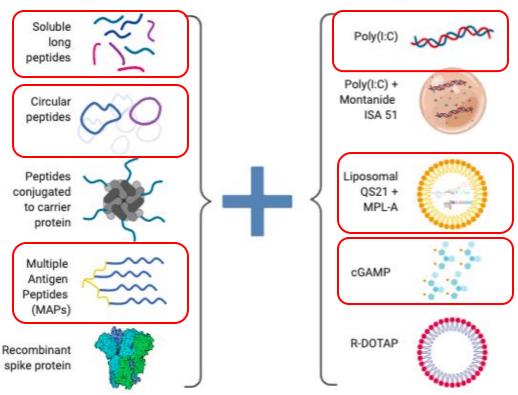

- 27mer peptides + Poly(I:C)
- BALB/c mice
- T-cell responses

 (ICS) & Ab binding to spike (ELISA)
- Do vaccine peptides compete other?
 - A (n=5): T-cell
 - B (n=5): T-cell
 - C (n=10): A+B
 - D (n=6): B-cell

		SARSCOV	N	Day								
					in.	1	7	1	14	21		
		Group	Peptide	Adjuvant		$\mathbf{+}$	+		↓	\checkmark		
		1	Set A	Poly IC + M	6	Vaccinate	Cheek Bleed	Cheek Bleed	Boost	Sacc		
	T Cell	2	Set B		6							
	È.	3	Set C (Set A + B)		6							
							↓ Serum	↓ Serum		↓ Serum	↓ Spleen	
							Freeze	Freeze		Freeze	Elispot	
)	Cell	4	Set A + Set D	Poly IC + M -	6				Boost	Sacc		
	T Cell + B Cell	5	Set B+ Set D		6							
		6	Set C + Set D		6	Vaccinate	Cheek Bleed	Cheek Bleed				
	slo	Measles	Measles		6							
	Controls	Adjuvant Only	None		6							
	റ്റ	Control	PE	S	3							
					Tissue		↓ Serum	↓ Serum		↓ Serum	↓ Spleen	
							ELISA (peptide)	ELISA (peptide)		ELISA (peptide)	Elispot	
					Assay					ELISA		

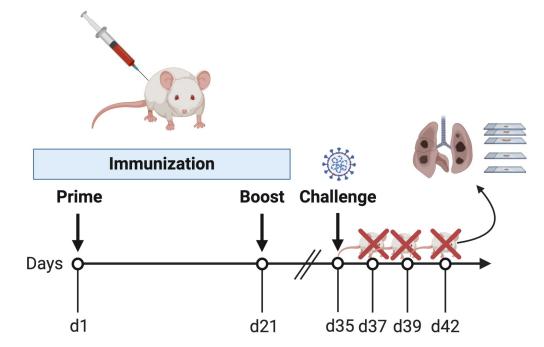
Preliminary ELISpot Results

- Highlighted strongest responses in n=5 peptide groups
 - A3: N310-336
 - B1: M95-121
- Still highest when combined w/ other peptides
 - ~3x-4x reduction in mean well intensity



Future Experiments

- Find best adjuvant for each antigen
 - small # of mice
- Compare antigens to each other + recombinant spike



Challenge / Protection (Heise Lab)

- Vaccine candidates with strong T-cell or B-cell responses repeated and tested for:
 - Neutralization
 - Protection from
 challenge with murine
 adapted SARS-CoV-2

• Vaccine & Cell Therapy Lab at Mount Sinai interested in starting a trial based on successful candidates, but hopefully not necessary

Beyond SARS-CoV-2

- **Other coronaviruses**: If protective against SARS-CoV-2 in mice, will same formulation & selection algorithm work for MERS?
- Improve T-cell epitope prediction: Large amounts of emerging T-cell epitope mapping from convalescent Covid-19 patients (ground truth)
 - Collaboration with Colin Raffel's to apply modern NLP deep learning techniques to antigen processing and T-cell epitope prediction
 - "Modern techniques" = Transformer neural network architecture, self-attention, semi-supervised and contrastive learning
- **Back to cancer vaccines**: Use improved algorithms and vaccine formulation for personalized cancer vaccine (PANDA-VAC 2.0?)

